Asma A. Al-Huqail
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asma A. Al-Huqail.
Frontiers in Microbiology | 2016
Abeer Hashem; Elsayed Fathi Abd_Allah; Abdulaziz A. Alqarawi; Asma A. Al-Huqail; Stephan Wirth; Dilfuza Egamberdieva
Microbes living symbiotically in plant tissues mutually cooperate with each other by providing nutrients for proliferation of the partner organism and have a beneficial effect on plant growth. However, few studies thus far have examined the interactive effect of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) in hostile conditions and their potential to improve plant stress tolerance. In this study, we investigated how the synergistic interactions of endophytic bacteria and AMF affect plant growth, nodulation, nutrient acquisition and stress tolerance of Acacia gerrardii under salt stress. Plant growth varied between the treatments with both single inoculants and was higher in plants inoculated with the endophytic B. subtilis strain than with AMF. Co-inoculated A. gerrardii had a significantly greater shoot and root dry weight, nodule number, and leghemoglobin content than those inoculated with AMF or B. subtilis alone under salt stress. The endophytic B. subtilis could alleviate the adverse effect of salt on AMF colonization. The differences in nitrate and nitrite reductase and nitrogenase activities between uninoculated plants and those inoculated with AMF and B. subtilis together under stress were significant. Both inoculation treatments, either B. subtilis alone or combined with AMF, enhanced the N, P, K, Mg, and Ca contents and phosphatase activities in salt-stressed A. gerrardii tissues and reduced Na and Cl concentration, thereby protecting salt-stressed plants from ionic and osmotic stress-induced changes. In conclusion, our results indicate that endophytic bacteria and AMF contribute to a tripartite mutualistic symbiosis in A. gerrardii and are coordinately involved in the plant adaptation to salt stress tolerance.
Biological Agriculture & Horticulture | 2013
Hashem Abeer; E. F. Abd-Allah; R. S. Al-Obeed; M. A.U. Mridha; Asma A. Al-Huqail
In this study, preharvest application of formulated Bacillus subtilis and postharvest cooling were examined to control the postharvest losses and extend the shelf life of table grape fruits (TGF). The preharvest application of B. subtilis improved the general appearance of both clusters and berries at harvest. The postharvest application of cooling decreased the changes in both physical (weight loss and firmness) and chemical (total soluble solid and acidity) characters of TGF, and hence decreased the incidence of decay. The preharvest application of B. subtilis improved the efficiency of postharvest cooling in extending the fruit shelf life. The changes in phenols, flavonoids, hydrolytic enzymes (carboxy methyl cellulase, pectin lyase, pectin methyl esterase, polygalacturonase) and oxidative enzymes (peroxidase, polyphenoloxidase) of TGF could be used as sensitive indicators of fruit quality, hence suggesting a positive correlation between the integrated management and maintenance of fruit quality. The synergistic action of preharvest and postharvest treatments in this study suggests that decreasing postharvest losses and extending shelf life of TGF could best be achieved by integrated management.
BioMed Research International | 2016
Abeer Hashem; E. F. Abd_Allah; Abdulaziz A. Alqarawi; Asma A. Al-Huqail; M. A. Shah
The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium, Bacillus subtilis (BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum; Rhizophagus intraradices; and Funneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardii Benth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction between B. subtilis and AMF vis-a-vis improvement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).
Saudi Journal of Biological Sciences | 2015
Asma A. Al-Huqail; Gehan A. El-Gaaly; Mohamed M. Ibrahim
Punica species are medicinally important plants belonging to the family Lythraceae. The pomegranate is widely reported to exhibit antiviral, antioxidant, anticancer, anti-proliferative activities. In the present study the ethanolic extract of the peel seeds of two species of Punica (Punica granatum and Punica protopunica) were subjected to GC–MS analysis. Twenty-one and 14 compounds were identified in P. granatum and P. protopunica peel seeds, respectively. The main chemical constituents in P. granatum-peel seeds were propanoic acid, benzenedicarboxylic acid, methoxypropionic acid and methyl amine. The corresponding constituents of P. protopunica peel seeds were benzenedicarboxylic acid, benzoic acid and propanoic acid. Moreover, the antioxidant effects of the aqueous ethanolic extracts were estimated in vitro. The two tested extracts contained significantly different phenolic and total flavonoid contents in P. granatum than in P. protopunica. Different in vitro methods of antioxidant activity determination produced varying results. In malondialdehyde (MDA), hydrogen peroxide (H2O2) scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, the two peel seed extracts exhibited very high antioxidant activities, with higher activity observed for the P. granatum extract.
Saudi Journal of Biological Sciences | 2018
Rahila Amber; Muhammad Adnan; Akash Tariq; Shahid Niaz Khan; Sakina Mussarat; Abeer Hashem; Asma A. Al-Huqail; Al-Bandari Fahad Al-Arjani; Elsayed Fathi Abd_Allah
The present study aimed to investigate the efficacy of traditionally used anti-mastitis plants (Allium sativum, Bunium persicum, Oryza sativa and Triticum aestivum) in northwest Pakistan against bacterial pathogens. Selected plants were phytochemically screened for Alkaloids, Flavonoids, and Saponins and checked for in vitro antibacterial activity at concentration of 50 mg/ml against S. aureus, E. coli and K. pneumoniae by agar well diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration was determined against multidrug resistant bacteria using tube dilution method. All extracts were found to significantly inhibit (p < 0.01, p < 0.05) the activity against bacterial strains examined. Among phytochemicals, alkaloids of all tested antimastitis plants produced significantly higher inhibition zones against bacteria. The minimum inhibitory concentration and minimum bactericidal concentration of phytochemicals and crude methanolic extracts against tested bacterial strains ranged between 12.5–50 mg/ml and 25–50 mg/ml, respectively. Medicinal plants traditionally used against mastitis are therapeutically active against bacterial pathogens. A. sativum and B. persicum were found to be potential candidate species for the development of novel veterinary drugs with low cost and fewer side effects.
Journal of Plant Interactions | 2018
Elsayed Fathi Abd_Allah; Abdulaziz A. Alqarawi; Abeer Hashem; Ramalingam Radhakrishnan; Asma A. Al-Huqail; Fatma Olyan Naser Al-Otibi; Jahangir Ahmad Malik; Raedah Ibrahim Alharbi; Dilfuza Egamberdieva
ABSTRACT Plant growth-promoting endophytic bacteria can stimulate the growth, nutrient acquisition, symbiotic performance and stress tolerance of chickpea plants under saline soil conditions. The aim of this study was to investigate the stress-adaptive mechanisms of chickpea plants mediated by Bacillus subtilis (BERA 71) under saline conditions. Inoculation with BERA 71 enhanced plant biomass and the synthesis of photosynthetic pigments and reduced the levels of reactive oxygen species (ROS) and lipid peroxidation in plants under conditions of stress. Furthermore, the activities of ROS-scavenging antioxidant enzymes (superoxide dismutase, peroxidase, catalase and glutathione reductase), the levels of non-enzymatic antioxidants (ascorbic acid and glutathione) and the total phenol content were increased in stressed plants during bacterial association. The bacteria decreased sodium accumulation and enhanced the nitrogen, potassium, calcium and magnesium content in the plants. The suppression of ROS generation and of lipid peroxidation and the accumulation of proline in BERA-71-inoculated plants enhanced the membrane stability under salinity stress and non-stress conditions.
Saudi Journal of Biological Sciences | 2017
Asma A. Al-Huqail; Maysa M Hatata; Arwa A. AL-Huqail; Mohamed M. Ibrahim
The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L−1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L−1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.
PLOS ONE | 2017
Javed Ahmad; Humayra Bashir; Rita Bagheri; Affan Baig; Asma A. Al-Huqail; Mohamed M. Ibrahim; M. Irfan Qureshi
Parthenium hysterophorus is a plant that tolerates drought and salinity to an extremely high degree. Higher expression of stress-responsive proteome contributes for greater defence against abiotic stresses. Thus, P. hysterophorus could be a rich source of genes that encode stress-imparting mechanisms and systems. The present study utilizes comparative physiological and proteomic approaches for identification of key proteins involved in stress-defence of P. hysterophorus. Thirty-days-old plants were exposed to drought (10% PEG 6000) and salinity (160 mM NaCl) for 10 days duration. Both stresses induced oxidative stress estimated in terms of TBARS and H2O2. Levels of both enzymatic and non-enzymatic antioxidants were elevated, more by drought than salinity. Particularly, SOD, GR, CAT and GST proved to be assisting as very commendable defence under drought, as well as salinity. Levels of ascorbate, glutathione and proline were also increased by both stresses, more in response to drought. Comparative proteomics analysis revealed a significant change in relative abundance of 72 proteins under drought and salinity. Drought and salinity increased abundance of 45 and 41 proteins and decreased abundance of 24 and 26 proteins, respectively. Drought and salinity increased and decreased abundance of 31 and 18 proteins, respectively. The functions of identified proteins included those related to defence response (26%), signal transduction (13%), transcription and translation (10%), growth and development (8.5%), photosynthesis (8.5%), metabolism (7%), terpenoid biosynthesis (5.5%), protein modification and transport (7%), oxido-reductase (4%) and Miscellaneous (11%). Among the defence related proteins, antioxidants and HSPs constituted 26% and 21%, respectively. Present study suggests a potential role of defence proteins. Proteins involved in molecular stabilization, formation of osmolytes and wax and contributing to stress-avoiding anatomical features emerged as key and complex mechanisms for imparting stress tolerance to P. hysterophorus.
Saudi Journal of Biological Sciences | 2017
Asma A. Al-Huqail; Abdulaziz A. Alqarawi; Abeer Hashem; Jahangir Ahmad Malik; Elsayed Fathi Abd_Allah
Experiments were conducted to investigate the role of silicon (Si, 2 mM potassium silicate - K2SiO3) in ameliorating the salinity (200 mM NaCl) triggered growth retardation, photosynthetic inhibition and the oxidative damage in Talh trees (Acacia gerrardii Benth). Salinity stress reduced length and dry biomass accumulation of root and shoot which were significantly improved by Si supplementation. Application of Si enhanced the synthesis of photosynthetic pigments including chlorophyll a, chlorophyll b, total chlorophylls and carotenoids resulting in greater photosynthetic activity measured in terms of net CO2 assimilation. Stomatal conductance and transpiration rate were declined due to NaCl treatment and supplementation of Si ameliorated the negative impact of NaCl on these attributes and was significantly improved when applied to normal grown plants. Further, lipid peroxidation was more in NaCl stressed plants without Si as compared to those supplemented with Si. Si protected Talh trees from NaCl induced oxidative damage by improving the activity of antioxidant enzymes (SOD, POD, CAT, APX and GR) and the content of ascorbic acid. Accumulation of compatible osmolytes including proline and glycine betaine was increased due to Si supplementation leading to improved growth under saline conditions in addition Si supplementation mitigated the deleterious effects of NaCl on flavonoid content. More importantly Si supplementation prevented excess uptake of Na and also protected the ill effects of excess Na on the uptake and accumulation of K and Ca resulting in significant decline in Na/K ratio. In conclusion, Si mitigates the negative effects of NaCl in A. gerrardii by modifying nutrient uptake, osmolytes accumulation and up-regulating antioxidant system.
Legume Research | 2016
Abdulaziz A. Alqarawi; Abeer Hashem; Elsayed Fathi Abd_Allah; Asma A. Al-Huqail; Thobayet Safr Alshahrani; Sa’ad Rukban Alshalawi; Dilfuza Egamberdieva