Asma Hayati Ahmad
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asma Hayati Ahmad.
The Scientific World Journal | 2014
Badriya Al-Rahbi; Rahimah Zakaria; Zahiruddin Othman; Asma Hassan; Asma Hayati Ahmad
A possible interaction between glucocorticoids and estrogen-induced increases in brain-derived-neurotrophic factor (BDNF) expression in enhancing depressive-like behaviour has been documented. Here we evaluated the effects of Tualang honey, a phytoestrogen, and 17β-estradiol (E2) on the depressive-like behaviour, stress hormones, and BDNF concentration in stressed ovariectomised (OVX) rats. The animals were divided into six groups: (i) nonstressed sham-operated control, (ii) stressed sham-operated control, (iii) nonstressed OVX, (iv) stressed OVX, (v) stressed OVX treated with E2 (20 μg daily, sc), and (vi) stressed OVX treated with Tualang honey (0.2 g/kg body weight daily, orally). Two months after surgery, the animals were subjected to social instability stress procedure followed by forced swimming test. Struggling time, immobility time, and swimming time were scored. Serum adrenocorticotropic hormone (ACTH) and corticosterone levels, and the BDNF concentration were determined using commercially available ELISA kits. Stressed OVX rats displayed increased depressive-like behaviour with significantly increased serum ACTH and corticosterone levels, while the BDNF concentration was significantly decreased compared to other experimental groups. These changes were notably reversed by both E2 and Tualang honey. In conclusion, both Tualang honey and E2 mediate antidepressive-like effects in stressed OVX rats, possibly acting via restoration of hypothalamic-pituitary-adrenal axis and enhancement of the BDNF concentration.
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery | 2012
Venkataramanujam Srinivasan; Asma Hayati Ahmad; Mahaneem Mohamed; Rahimah Zakaria
Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonins effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin levels and thereby arresting the growth and elimination of malarial parasites from the blood of the host are all cited in the paper. The purpose of the paper is to highlight the importance of melatonin acting as a cue for Plasmodium faciparum growth and to discuss the ways of curbing the effects of melatonin on Plasmodium growth and for arresting its life cycle, as a method of eliminating the parasite from the host.
Infectious disorders drug targets | 2012
Venkataramanujam Srinivasan; Mahaneem Mohamed; Rahimah Zakaria; Asma Hayati Ahmad
Malaria, one of the most deadly diseases of our time affects more than 200 million people across the globe and is responsible for about one million deaths annually. Until recently Plasmodium falciparum has been the main cause for malarial infection in human beings but now Plasmodium knowlesi from Malaysia remains as one of the most virulent parasite spreading fast not only in Malaysia but in different parts of the world. Hence there is urgent need for the global fight to control malaria. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria infected patients with anti-malarial drugs has helped to eliminate malarial infections successfully but with increased resistance displayed by malarial parasites to these drugs there is resurgence of malaria caused both by drug resistance as well as by infection caused by new malarial species like Plasmodium knowlesi. With recent advances on molecular studies on malarial parasites it is now clear that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence treatment modalities that can effectively block the action of melatonin on Plasmodium species during night time by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.
Medical Sciences | 2015
Zahiruddin Othman; Rahimah Zakaria; Nik Hazlina Nik Hussain; Asma Hassan; Nazlahshaniza Shafin; Badriya Al-Rahbi; Asma Hayati Ahmad
The composition and physicochemical properties of honey are variable depending on its floral source and often named according to the geographical location. The potential medicinal benefits of Tualang honey, a multifloral jungle honey found in Malaysia, have recently been attracting attention because of its reported beneficial effects in various diseases. This paper reviews the effects of honey, particularly Tualang honey, on learning and memory. Information regarding the effects of Tualang honey on learning and memory in human as well as animal models is gleaned to hypothesize its underlying mechanisms. These studies show that Tualang honey improves morphology of memory-related brain areas, reduces brain oxidative stress, increases brain-derived neurotrophic factor (BDNF) and acetylcholine (ACh) concentrations, and reduces acetylcholinesterase (AChE) in the brain homogenates. Its anti-inflammatory roles in reducing inflammatory trigger and microglial activation have yet to be investigated. It is hypothesized that the improvement in learning and memory following Tualang honey supplementation is due to the significant improvement in brain morphology and enhancement of brain cholinergic system secondary to reduction in brain oxidative damage and/or upregulation of BDNF concentration. Further studies are imperative to elucidate the molecular mechanism of actions.
Journal of Physiology and Biochemistry | 2014
Rosfaiizah Siran; Asma Hayati Ahmad; Che Badariah Abdul Aziz; Zalina Ismail
REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Downregulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague–Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.
Excli Journal | 2015
Norulsuhada Munjir; Zahiruddin Othman; Rahimah Zakaria; Nazlahshaniza Shafin; Noor Aini Hussain; Anisah Mat Desa; Asma Hayati Ahmad
This study aims to develop two alternate forms for Malay version of Auditory Verbal Learning Test (MAVLT) and to determine their equivalency and practice effect. Ninety healthy volunteers were subjected to the following neuropsychological tests at baseline, and at one month interval according to their assigned group; group 1 (MAVLT - MAVLT), group 2 (MAVLT – Alternate Form 1 - Alternate Form 1), and group 3 (MAVLT - Alternate Form 2 - Alternate Form 2). There were no significant difference in the mean score of all the trials at baseline among the three groups, and most of the mean score of trials between MAVLT and Alternate Form 1, and between MAVLT and Alternate Form 2. There was significant improvement in the mean score of each trial when the same form was used repeatedly at the interval of one month. However, there was no significant improvement in the mean score of each trial when the Alternate Form 2 was used during repeated neuropsychological testing. The MAVLT is a reliable instrument for repeated neuropsychological testing as long as alternate forms are used. The Alternate Form 2 showed better equivalency to MAVLT and less practice effects.
International Scholarly Research Notices | 2014
Badriya Al-Rahbi; Rahimah Zakaria; Zahiruddin Othman; Asma Hassan; Asma Hayati Ahmad
The present study aims to evaluate the antioxidant and anxiolytic-like effect of Tualang honey in stressed ovariectomized (OVX) rats. The animals were divided into; (i) nonstressed sham-operated control rats, (ii) sham-operated control rats exposed to stress, (iii) nonstressed OVX rats, (iv) OVX rats exposed to stress, (v) OVX rats exposed to stress and treated with 17 β-oestradiol (E2) (20 μg daily, sc), and (vi) OVX rats exposed to stress and treated with Tualang honey (0.2 g/kg body weight, orally). The open field test was used to evaluate the anxiety-like behaviour and ELISA kits were used to measure oxidant/antioxidant status of the brain homogenates. The result showed that anxiety-like behavior was significantly increased in stressed OVX compared to other groups, and administering either E2 or Tualang honey significantly decreased anxiety-like behaviour in stressed OVX rats. The levels of malondialdehyde (MDA) and protein carbonyl (PCO) were significantly decreased while the levels/activities of superoxide dismutase (SOD), glutathione S-transferases (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly increased in the brain homogenates of treated stressed OVX groups compared to untreated stressed OVX. In conclusion, Tualang honey has protective effects against brain oxidative stress and may be useful alternative anxiolytic agent especially for postmenopausal women.
AIP Conference Proceedings | 2018
Sofina Tamam; Asma Hayati Ahmad; Wan Ahmad Kamil
This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG...
The Malaysian journal of medical sciences | 2017
Sofina Tamam; Asma Hayati Ahmad
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain.
Journal of Physics: Conference Series | 2017
S Tamam; Asma Hayati Ahmad; M E Aziz; W A Kamil
The aim of the study is to investigate brain responses to acute laser pain when a loved one is nearby. Laser pain stimuli at individual pain threshold were delivered using Th:YAG laser to 17 female participants. The participants were categorised into two groups, Love Hurts or Love Heals, according to their responses to pain stimulation during the presence of their loved ones. fMRI brain activation was obtained using 3 T Philips Achieva MRI scanner utilising blocked design paradigm comprising 15 blocks of stimulation phase and 15 blocks of no stimulation. fMRI images were analysed using statistical parametric mapping (SPM) focusing on random effects (RFX) analysis. We found that both groups activated pain-related areas such as the thalamus, secondary somatosensory cortex, insula and cingulate cortex. However, Love Hurts showed more activity in thalamus, parahippocampal gyrus and hippocampus; while Love Heals showed more activity in the entire part of cingulate cortex during the presence of their loved ones. In conclusion, there may be specific brain regions responsible for modulation of pain due to the presence of a loved one thus manifesting as Love Hurts or Love Heals.