Asma Rizvi
Loma Linda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asma Rizvi.
Journal of Applied Physiology | 2009
Daila S. Gridley; James M. Slater; Xian Luo-Owen; Asma Rizvi; Stephen K. Chapes; Louis S. Stodieck; Virginia L. Ferguson; Michael J. Pecaut
The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3-6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3(+) T and CD19(+) B cell counts were low in spleens from the FLT group, whereas the number of NK1.1(+) natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-gamma, and macrophage inflammatory protein-1alpha were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment.
Radiation Research | 2008
Daila S. Gridley; G. Coutrakon; Asma Rizvi; Erben J. M. Bayeta; Xian Luo-Owen; Adeola Y. Makinde; Farnaz P. Baqai; Peter Koss; James M. Slater; Michael J. Pecaut
Abstract Gridley, D. S., Coutrakon, G. B., Rizvi, A., Bayeta, E. J. M., Luo-Owen, X., Makinde, A. Y., Baqai, F., Koss, P., Slater, J. M. and Pecaut, M. J. Low-Dose Photons Modify Liver Response to Simulated Solar Particle Event Protons. Radiat. Res. 169, 280–287 (2008). The health consequences of exposure to low-dose radiation combined with a solar particle event during space travel remain unresolved. The goal of this study was to determine whether protracted radiation exposure alters gene expression and oxidative burst capacity in the liver, an organ vital in many biological processes. C57BL/6 mice were whole-body irradiated with 2 Gy simulated solar particle event (SPE) protons over 36 h, both with and without pre-exposure to low-dose/low-dose-rate photons (57Co, 0.049 Gy total at 0.024 cGy/h). Livers were excised immediately after irradiation (day 0) or on day 21 thereafter for analysis of 84 oxidative stress-related genes using RT-PCR; genes up or down-regulated by more than twofold were noted. On day 0, genes with increased expression were: photons, none; simulated SPE, Id1; photons + simulated SPE, Bax, Id1, Snrp70. Down-regulated genes at this same time were: photons, Igfbp1; simulated SPE, Arnt2, Igfbp1, Il6, Lct, Mybl2, Ptx3. By day 21, a much greater effect was noted than on day 0. Exposure to photons + simulated SPE up-regulated completely different genes than those up-regulated after either photons or the simulated SPE alone (photons, Cstb; simulated SPE, Dctn2, Khsrp, Man2b1, Snrp70; photons + simulated SPE, Casp1, Col1a1, Hspcb, Il6st, Rpl28, Spnb2). There were many down-regulated genes in all irradiated groups on day 21 (photons, 13; simulated SPE, 16; photons + simulated SPE, 16), with very little overlap among groups. Oxygen radical production by liver phagocytes was significantly enhanced by photons on day 21. The results demonstrate that whole-body irradiation with low-dose-rate photons, as well as time after exposure, had a great impact on liver response to a simulated solar particle event.
Technology in Cancer Research & Treatment | 2010
Daila S. Gridley; Xian Luo-Owen; Asma Rizvi; Adeola Y. Makinde; Michael J. Pecaut; Xiao Wen Mao; James M. Slater
Radiation is a major factor in the spaceflight environment that has carcinogenic potential. Astronauts on missions are continuously exposed to low-dose/low-dose-rate (LDR) radiation and may receive relatively high doses during a solar particle event (SPE) that consists primarily of protons. However, there are very few reports in which LDR photons were combined with protons. In this study, C57BL/6 mice were exposed to 1.7 Gy simulated SPE (sSPE) protons over 36 h, both with and without pre-exposure to 0.01 Gray (Gy) LDR γ-rays at 0.018 cGy/h. Apoptosis in skin samples was determined by immunohistochemistry immediately post-irradiation (day 0). Spleen mass relative to body mass, white blood cells (WBC), major leukocyte populations, lymphocyte subsets (T, Th, Tc, B, NK), and CD4+ CD25+ Foxp3+ T regulatory (Treg) cells were analyzed on days 4 and 21. Apoptosis in skin samples was evident in all irradiated groups; the LDR+sSPE mice had the greatest expression of activated caspase-3. On day 4 post-irradiation, the sSPE and LDR+sSPE groups had significantly lower WBC counts in blood and spleen compared to non-irradiated controls (p < 0.05 vs. 0 Gy). CD4+ CD25+ Foxp3+ Treg cell numbers in spleen were decreased at day 4, but proportions were increased in the sSPE and LDR+sSPE groups (p < 0.05 vs. 0 Gy). By day 21, lymphocyte counts were still low in blood from the LDR+sSPE mice, especially due to reductions in B, NK, and CD8+ T cytotoxic cells. The data demonstrate, for the first time, that pre-exposure to LDR photons did not protect against the adverse effects of radiation mimicking a large solar storm. The increased proportion of immunosuppressive CD4+ CD25+ Foxp3+ Treg and persistent reduction in circulating lymphocytes may adversely impact immune defenses that include removal of sub-lethally damaged cells with carcinogenic potential, at least for a period of time post-irradiation.
International Journal of Radiation Biology | 2011
Asma Rizvi; Michael J. Pecaut; James M. Slater; Shruti Subramaniam; Daila S. Gridley
Purpose: Astronauts on missions are exposed to low-dose/low-dose-rate (LDR) radiation and could receive high doses during solar particle events (SPE). This study investigated T cell function in response to LDR radiation and simulated SPE (sSPE) protons, alone and in combination. Materials and methods: C57BL/6 mice received LDR γ-radiation (57Co) to a total dose of 0.01 Gray (Gy) at 0.179 mGy/h, either with or without subsequent exposure to 1.7 Gy sSPE protons delivered over 36 h. Mice were euthanised on days 4 and 21 post-exposure. T cells with cluster of differentiation 4 (CD4+) were negatively isolated from spleens and activated with anti-CD3 antibody. Cells and supernatants were evaluated for survival/signalling proteins and cytokines. Results: The most striking effects were noted on day 21. In the survival pathway, nuclear factor-kappaB (NF-κB; total and active forms) and p38 mitogen activated protein kinase (p38MAPK; total) were significantly increased and cJun N-terminal kinase (JNK; total and active) was decreased when mice were primed with LDR γ-rays prior to sSPE exposure (P < 0.001). Evaluation of the T cell antigen receptor (TCR) signalling pathway revealed that LDR γ-ray exposure normalised the high sSPE proton-induced level of lymphocyte specific protein tyrosine kinase (Lck; total and active) on day 21 (P < 0.001 for sSPE vs. LDR + sSPE), while radiation had no effect on active zeta-chain-associated protein kinase 70 (Zap-70). There was increased production of interleukin-2 (IL-2) and IL-4 and decreased transforming growth factor-β1 in the LDR + sSPE group compared to the sSPE group. Conclusion: The data demonstrate, for the first time, that protracted exposure to LDR γ-rays can significantly modify the effects of sSPE protons on critical survival/signalling proteins and immunomodulatory cytokines produced by CD4+ T cells.
Radiation Research | 2010
Adeola Y. Makinde; Asma Rizvi; James D. Crapo; Robert D. Pearlstein; James M. Slater; Daila S. Gridley
Abstract The goal of this study was to evaluate cytokine secretion capacity in a mouse model of prostate cancer, both with and without metalloporphyrin antioxidant and radiation treatment. C57BL/6 mice with subcutaneous RM-9 tumors were treated daily for 12 days with MnTE-2-PyP5+ [Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin], beginning 1 day after injection of RM-9 cells; a 10-Gy tumor-localized dose of 60Co γ rays was administered in a single fraction on day 7. Spleen, tumors and plasma were collected on day 12. T cells in the spleen were activated with anti-CD3 antibody and supernatants were collected. Twenty-two cytokines were quantified in spleen supernatants, five in tumor homogenates, and three in plasma using multiplex bead array technology and ELISA. The presence of a tumor had significant effects on many of the cytokines quantified (P < 0.05). Tumor-induced depression was evident for eight spleen cytokines (TNF-α, G-CSF, GM-CSF, IFN-γ, IL10, IP-10, MIP-1α and mKC), whereas only three were enhanced (IL1β, IL6 and MCP-1). Radiotherapy resulted in enhanced splenocyte capacity to produce IL4 and IL13 and increased IL4, MCP-1 and VEGF in tumors (P < 0.05). Addition of MnTE-2-PyP5+ to radiation decreased the concentrations of IL4, IL13 and TGF-β1 in spleen supernatants and IL4 and VEGF in tumors (P < 0.05 compared to radiation alone). Some differences were also noted in plasma cytokines. Overall, the findings suggest that administration of MnTE-2-PyP5+ together with radiotherapy may enhance anti-tumor immune responsiveness and decrease the risk for radiation-induced normal tissue toxicities.
Radiation Research | 2012
Xian Luo-Owen; Michael J. Pecaut; Asma Rizvi; Daila S. Gridley
Health risks due to exposure to low-dose/low-dose-rate radiation alone or when combined with acute irradiation are not yet clearly defined. This study quantified the effects of protracted exposure to low-dose/low-dose-rate γ rays with and without acute exposure to protons on the response of immune and other cell populations. C57BL/6 mice were irradiated with 57Co (0.05 Gy at 0.025 cGy/h); subsets were subsequently exposed to high-dose/high-dose-rate proton radiation (250 MeV; 2 or 3 Gy at 0.5 Gy/min). Analyses were performed at 4 and 17 days postexposure. Spleen and thymus masses relative to body mass were decreased on day 4 after proton irradiation with or without pre-exposure to γ rays; by day 17, however, the decrease was attenuated by the priming dose. Proton dose-dependent decreases, either with or without pre-exposure to γ rays, occurred in white blood cell, lymphocyte and granulocyte counts in blood but not in spleen. A similar pattern was found for lymphocyte subpopulations, including CD3+ T, CD19+ B, CD4+ T, CD8+ T and NK1.1+ natural killer (NK) cells. Spontaneous DNA synthesis by leukocytes after proton irradiation was high in blood on day 4 and high in spleen on day 17; priming with γ radiation attenuated the effect of 3 Gy in both body compartments. Some differences were also noted among groups in erythrocyte and thrombocyte characteristics. Analysis of splenocytes activated with anti-CD3/anti-CD28 antibodies showed changes in T-helper 1 (Th1) and Th2 cytokines. Overall, the data demonstrate that pre-exposure of an intact mammal to low-dose/low-dose-rate γ rays can attenuate the response to acute exposure to proton radiation with respect to at least some cell populations.
Technology in Cancer Research & Treatment | 2012
Shalini Mehrotra; Michael J. Pecaut; T. L. Freeman; James D. Crapo; Asma Rizvi; Xian Luo-Owen; Jerry M. Slater; Daila S. Gridley
Due to radiation-induced immune depression and development of pathologies such as cancer, there is increasing urgency to identify radiomitigators that are effective when administered after radiation exposure. The main goal of this study was to determine the radiomitigation capacity of MnTE-2-PyP[Mn(III) tetrakis (N-ethylpyridinium-2-yl) porphyrin], a superoxide dismutase (SOD) mimetic, and evaluate leukocyte parameters in spleen and blood. C57BL/6 mice were total-body exposed to 2 Gy γ-rays (Co-60), i.e., well below a lethal dose, followed by subcutaneous implantation of 5 × 105 RM-9 prostate tumor cells and initiation of MnTE-2-PyP treatment (day 0); interval between each procedure was 1–2 h. The drug was administered daily (12 times). Tumor progression was monitored and immunological analyses were performed on a subset per group on day 12. Animals treated with MnTE-2-PyP alone had significantly slower tumor growth compared to mice that did not receive the drug (P < 0.05), while radiation alone had no effect. Treatment of tumor-bearing mice with MnTE-2-PyP alone significantly increased spleen mass relative to body mass; the numbers of splenic white blood cells (WBC) and lymphocytes (B and T), as well as circulating WBC, granulocytes, and platelets, were high compared to one of more of the other groups (P < 0.05). The results show that MnTE-2-PyP slowed RM-9 tumor progression and up-regulated immune parameters, but mitigation of the effects of 2 Gy total-body irradiation were minimal.
International Journal of Radiation Biology | 2013
Daila S. Gridley; Asma Rizvi; Adeola Y. Makinde; Xian Luo-Owen; Xiao Wen Mao; Jian Tian; Jason M. Slater; Michael J. Pecaut
Abstract Purpose: The major goal was to evaluate effects of various radiation regimens on leukocyte populations relatively long-term after whole-body irradiation. Materials and methods: C57BL/6 mice were exposed to-low-dose/low-dose rate (LDR) 57Co γ-rays (0.01 Gy, 0.03 cGy/h), with and without acute 2 Gy proton (1 Gy/min) or γ-ray (0.9 Gy/min) irradiation; analyses were done on days 21 and 56 post-exposure. Results: Numerous radiation-induced changes were noted at one or both time points. Among the most striking differences (P < 0.05) were: (i) High percentage of CD4+CD25+Foxp3+ T cells in spleens from the Proton vs. LDR, Gamma and LDR + Proton groups (day 56); (ii) high interleukin-2 (IL-2) in spleen supernatants from the LDR and LDR + Proton groups vs. 0 Gy (day 56), whereas IL-10 was high in the LDR + Gamma group vs. 0 Gy (day 56); (iii) difference in transforming growth factor-β1 (TGF-β1) in spleen supernatants from Proton and LDR + Proton groups vs. Gamma and LDR + Gamma groups (both days); (iv) low TGF-β1 in blood from LDR + Proton vs. LDR + Gamma group (day 21); and (v) high level of activated cJun N-terminal kinase (JNK) in CD4+ T cells from LDR + Proton vs. LDR + Gamma group (day 21). Conclusions: The findings demonstrate that at least some immune responses to acute 2 Gy radiation were dependent on radiation quality time of assessment, and pre-exposure to LDR γ-rays.
in Vivo | 2008
Daila S. Gridley; Asma Rizvi; Xian Luo-Owen; Adeola Y. Makinde; G. Coutrakon; Peter Koss; James M. Slater; Michael J. Pecaut
Anticancer Research | 2007
Daila S. Gridley; Adeola Y. Makinde; Xian Luo; Asma Rizvi; James D. Crapo; Mark W. Dewhirst; Benjamin J. Moeller; Robert D. Pearlstein; James M. Slater