Asmorom Kibrom
Austrian Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asmorom Kibrom.
ACS Nano | 2011
Lin Jiang; Yinghui Sun; Christoph Nowak; Asmorom Kibrom; Changji Zou; Jan Ma; Harald Fuchs; Shuzhou Li; Lifeng Chi; Xiaodong Chen
We report a new strategy to pattern plasmonic nanoparticles into multiplexed one-dimensional arrays based on the spatially modulated electrostatic potential. The 32 nm Au nanoparticles can be simultaneously deposited on one chip with tunable interparticle distance by solely adjusting the width of the grooves. Furthermore, 32 and 13 nm Au nanoparticles can be selectively deposited in grooves of different widths on one chip. As a result, the surface plasmon absorption bands on the chip can be tuned depending on the interparticle distance or the particle size of multiplex 1D arrays, which could enhance the Raman scattering cross section of the adsorbed molecules and result in multiplex surface-enhanced Raman scattering (SERS) response on the chip. This strategy provides a general method to fabricate 1D multiplex arrays with different particle sizes and interparticle distances on one chip.
Soft Matter | 2011
Asmorom Kibrom; Robert F. Roskamp; Ulrich Jonas; Bernhard Menges; Wolfgang Knoll; Harald Paulsen; Renate Naumann
Polymer-supported bilayer lipid membranes offer great opportunities for the investigation of functional membrane proteins. Here we present a new approach in this direction by introducing a thin hydrogel layer as a soft ‘cushion’ on indium–tin oxide (ITO), providing a smooth, functional surface to form the protein-tethered BLM (ptBLM). ITO was used as a transparent electrode, enabling simultaneous implementation of electrochemical and optical waveguide techniques. The hydrogel poly(N-(2-hydroxyethyl)acrylamide-co-5-acrylamido-1-carboxypentyl-iminodiacetate-co-4-benzoylphenyl methacrylate) (P(HEAAm-co-NTAAAm-co-MABP)) was functionalized with the nickel chelating nitrilotriacetic acid (NTA) groups, to which cytochrome c oxidase (CcO) from Paracoccus denitrificans was bound in a well defined orientation via a his-tag attached to its subunit I. Given that the mesh size of P(HEAAm-co-NTAAAm-co-MABP) was smaller than the protein size, binding to the hydrogel occurred only on the top of the layer. The lipid bilayer was formed around the protein by in situdialysis. Electrochemical impedance spectroscopy showed good electrical sealing properties with a resistance of ∼1 MΩ cm2. Furthermore, surface plasmon resonance optical waveguide spectroscopy (SPR/OWS) indicated an increased anisotropy of the system after formation of the lipid bilayer. Cyclic voltammetry in the presence of reduced cytochrome c demonstrated that CcO was incorporated into the gel-supported ptBLM in a functionally active form.
Talanta | 2013
Qingwen Zhang; Yi Wang; Anca Mateescu; Khulan Sergelen; Asmorom Kibrom; Ulrich Jonas; Tianxin Wei; Jakub Dostalek
Rapid detection of hormones at sub-ng/ml concentrations is of tremendous importance for diagnostic purposes, quality control, and environmental monitoring. In this respect, we report a novel label-free biosensor based on hydrogel optical waveguide spectroscopy (HOWS) for the sensitive detection of 17β-estradiol (E2). This approach was implemented by using a thin hydrogel layer of a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) terpolymer that was attached to a metallic sensor surface in order to simultaneously serve as a binding matrix and an optical waveguide. Refractive index changes that are accompanied with the specific capture of biomolecules from an aqueous sample on the sensor surface were probed by resonantly excited hydrogel optical waveguide modes. To optically excite and interrogate these waves, an optical setup based on Kretschmann configuration of attenuated total reflection (ATR) method that is compatible with surface plasmon resonance (SPR) was used. We demonstrate that HOWS offers a higher binding capacity, good anti-fouling properties, improved figure of merit, and E2 detection limit of 50 pg/ml which is seven times better than that obtained by a regular surface plasmon resonance (SPR) biosensor.
Journal of Physical Chemistry B | 2008
Joseph W. F. Robertson; Marcel G. Friedrich; Asmorom Kibrom; Wolfgang Knoll; Renate Naumann; Dieter Walz
Ion transport across tethered bilayer lipid membranes (tBLMs) is modeled using a hybrid network description which combines potential-dependent rate equations with passive electrical elements. Passive permeation of ions is described by the integrated Nernst-Planck equation. Simulations based on this model are performed with the network simulation program SPICE (simulation program with integrated circuit emphasis). Electrochemical impedance spectra of tBLMs are simulated with this algorithm and challenged by spectra measured with tBLMs submersed in 0.1 M KCl solution and subjected to various potential differences. It is found that the simulated spectra can only satisfactorily represent the experimental data if the permeability coefficients of the ions are dependent on the membrane potential. It is concluded that the mechanism of passive ion transport across the tBLM seems to follow the transient pore model rather than the solubility-diffusion model. This algorithm can be easily extended to include ion transport processes due to channels, carriers, or pumps incorporated into the tBLM.
Advances in Polymer Science | 2009
Wolfgang Knoll; Katja Bender; Renate Förch; Curt W. Frank; Heide Götz; Claudia Heibel; Toby A. Jenkins; Ulrich Jonas; Asmorom Kibrom; Ralf Kügler; Christoph Naumann; Renate Naumann; Annette Reisinger; Jürgen Rühe; Stefan M. Schiller; Eva-Kathrin Sinner
This contribution describes the assembly and structural and functional characterization of various types of polymer-supported lipid bilayer membranes.We start with the description of the polymer-cushioned membrane that can be prepared by first attaching (covalently) polymer coils (as tethers or cushions) from solution to a reactive solid support, followed by the covalent coupling of a lipid monolayer containing reactive anchor lipids. Alternatively, a lipopolymer monolayer (if needed mixed with “normal” lipids) is pre-organized at the water-air interface in a Langmuir trough and then transferred to a solid substrate which is again pre-functionalized by a reactive coating. A special case discussed is the use of glycolipopolymers for the assembly of the proximal tethered monolayer. From all these interfacial architectures the final structure, the supported bilayer, is obtained by the fusion of vesicles forming the distal monolayer of the membrane.
Optics Letters | 2012
Pinar Frank; Johannes Srajer; Andreas Schwaighofer; Asmorom Kibrom; Christoph Nowak
Here we present a surface based on double-layered nanoparticle stacks suitable for spectro-electrochemical applications. The structure is formed on a continuous gold layer by a two-dimensional periodic array of stacks of gold and tantalum pentoxide nanodisks. Reflection spectra in the visible wavelength region showed the multiple-resonant nature of surface plasmon (SP) excitations in the nanostructure, which is in good agreement with simulations based on a finite-difference-time-domain method. The multiple SP resonances can be tuned to various wavelength regions, which are required for simultaneous enhancement at excitation and emission wavelengths. Cyclic voltammetry measurements on the nanostructure proved the applicability of electrochemical methods involving interfacial redox processes.
Progress in Reaction Kinetics and Mechanism | 2013
Johannes Srajer; Andreas Schwaighofer; David M. Hildenbrandt; Asmorom Kibrom; Renate Naumann
We use chemical reaction kinetics to explore the stepwise electron and proton transfer reactions of cytochrome c oxidase (CcO) from R. sphaeroides. Proton transport coupled to electron transport (ET) is investigated in terms of a sequence of protonation-dependent second-order redox reactions. Thereby, we assume fixed rather than shifting dissociation constants of the redox sites. Proton transport can thus be simulated particularly when separate proton uptake and release sites are assumed rather than the same proton pump site for every ET step. In order to test these assumptions, we make use of a model system introduced earlier, which allows us to study direct ET of redox enzymes by electrochemistry. A four-electron transfer model of CcO had been developed before, according to which electrons are transferred from the electrode to CuA. Thereafter, electrons are transferred along the sequence heme a, heme a3 and CuB. In the present investigation, we consider protonation equilibria of the oxidised and reduced species for each of the four centres. Moreover, we add oxygen/H2O as the terminal (fifth) redox couple including protonation of reduced oxygen to water. Finally we arrive at a kinetic model comprising five protonation-dependent redox couples. The results from the simulations are compared with experimental data obtained in the absence and presence of oxygen. As a result, we can show that proton transport can be modelled in terms of protonation-dependent redox kinetics.
Proceedings of SPIE | 2006
Ayi Bahtiar; Kaloian Koynov; Asmorom Kibrom; Taek Ahn; Christoph Bubeck
We present nonlinear optical spectroscopy of the model conjugated polymer MEH-PPV, a derivative of poly(paraphenylenevinylene) (PPV) and compare it with PPV. We perform multiphoton excited fluorescence spectroscopy and z-scan studies of solutions compared with third-harmonic generation, linear and nonlinear waveguide spectroscopy with intensity dependent prism coupling of thin films in the NIR region. Spectra of the nonlinear absorption coefficient and nonlinear refractive index are used to identify the figures of merit (FOM). We observe a spectral window at 1100 - 1200 nm were the application demands for all-optical waveguide switching are fulfilled. We demonstrate all-optical refractive index changes in the order of 0.001. Control of the molecular weight of MEH-PPVs enables improved film forming properties, reduced birefringence and ultimately low waveguide propagation losses < 1 dB/cm.
Biophysical Journal | 2012
Johannes Srajer; Andreas Schwaighofer; Asmorom Kibrom; Christoph Nowak; Renate Naumann
Plasmonics | 2014
Changji Zou; Pinar Frank; Johannes Srajer; Asmorom Kibrom; Renate Naumann; Christoph Nowak