Åsmund K. Røhr
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Åsmund K. Røhr.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Zarah Forsberg; Alasdair MacKenzie; Morten Sørlie; Åsmund K. Røhr; Ronny Helland; Andrew S. Arvai; Gustav Vaaje-Kolstad; Vincent G. H. Eijsink
Significance The discovery of lytic polysaccharide monooxygenases (LPMOs) has profoundly changed our understanding of the enzymatic conversion of recalcitrant polysaccharides, such as cellulose. Although in-depth studies of fungal cellulolytic LPMOs have been reported, the structures and functions of their bacterial counterparts with no detectable sequence similarity remain largely elusive. We present the structures of a conserved pair of bacterial cellulose-active LPMOs supplemented with extensive functional characterization. The structural data allow a thorough comparative assessment of fungal and bacterial LPMOs, providing insight into the structural basis of substrate specificity and the oxidative mechanism (C1/C4 oxidation). Importantly, we show that this LPMO pair acts synergistically when degrading cellulose, a finding that may help explain the occurrence of multiple LPMOs in a single microbe. For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu2+ (12–31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.
Biochemistry | 2014
Zarah Forsberg; Åsmund K. Røhr; Sophanit Mekasha; K. Kristoffer Andersson; Vincent G. H. Eijsink; Gustav Vaaje-Kolstad; Morten Sørlie
Lytic polysaccharide monooxygenases (LPMOs), found in family 9 (previously GH61), family 10 (previously CBM33), and the newly discovered family 11 of auxiliary activities (AA) in the carbohydrate-active enzyme classification system, are copper-dependent enzymes that oxidize sp(3)-carbons in recalcitrant polysaccharides such as chitin and cellulose in the presence of an external electron donor. In this study, we describe the activity of two AA10-type LPMOs whose activities have not been described before and we compare in total four different AA10-type LPMOs with the aim of finding possible correlations between their substrate specificities, sequences, and EPR signals. EPR spectra indicate that the electronic environment of the copper varies within the AA10 family even though amino acids directly interacting with the copper atom are identical in all four enzymes. This variation seems to be correlated to substrate specificity and is likely caused by sequence variation in areas that affect substrate binding geometry and/or by variation in a cluster of conserved aromatic residues likely involved in electron transfer. Interestingly, EPR signals for cellulose-active AA10 enzymes were similar to those previously observed for cellulose-active AA9 enzymes. Mutation of the conserved phenylalanine positioned in close proximity to the copper center in AA10-type LPMOs to Tyr (the corresponding residue in most AA9-type LPMOs) or Ala, led to complete or partial inactivation, respectively, while in both cases the ability to bind copper was maintained. Moreover, substrate binding affinity and degradation ability seemed hardly correlated, further emphasizing the crucial role of the active site configuration in determining LPMO functionality.
Journal of Biological Chemistry | 2015
Anna S. Borisova; Trine Isaksen; Maria Dimarogona; Abhishek A. Kognole; Geir Mathiesen; Anikó Várnai; Åsmund K. Røhr; Christina M. Payne; Morten Sørlie; Mats Sandgren; Vincent G. H. Eijsink
Background: The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important in enzymatic conversion of lignocellulosic biomass. Results: We describe structural and functional studies of NcLPMO9C, which cleaves both cellulose and certain hemicelluloses. Conclusion: NcLPMO9C has structural and functional features that correlate with the enzymes catalytic capabilities. Significance: This study shows how LPMO active sites are tailored to varying functionalities and adds to a growing LPMO knowledge base. The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose β-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu2+ center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation.
Journal of Biological Chemistry | 2007
Hans-Petter Hersleth; Takeshi Uchida; Åsmund K. Røhr; Thomas Teschner; Volker Schünemann; Teizo Kitagawa; Alfred X. Trautwein; Carl Henrik Görbitz; K. Kristoffer Andersson
High resolution crystal structures of myoglobin in the pH range 5.2–8.7 have been used as models for the peroxide-derived compound II intermediates in heme peroxidases and oxygenases. The observed Fe–O bond length (1.86–1.90 Å) is consistent with that of a single bond. The compound II state of myoglobin in crystals was controlled by single-crystal microspectrophotometry before and after synchrotron data collection. We observe some radiation-induced changes in both compound II (resulting in intermediate H) and in the resting ferric state of myoglobin. These radiation-induced states are quite unstable, and compound II and ferric myoglobin are immediately regenerated through a short heating above the glass transition temperature (<1 s) of the crystals. It is unclear how this influences our compound II structures compared with the unaffected compound II, but some crystallographic data suggest that the influence on the Fe–O bond distance is minimal. Based on our crystallographic and spectroscopic data we suggest that for myoglobin the compound II intermediate consists of an FeIV–O species with a single bond. The presence of FeIV is indicated by a small isomer shift of δ = 0.07 mm/s from Mössbauer spectroscopy. Earlier quantum refinements (crystallographic refinement where the molecular-mechanics potential is replaced by a quantum chemical calculation) and density functional theory calculations suggest that this intermediate H species is protonated.
Nature Chemical Biology | 2017
Bastien Bissaro; Åsmund K. Røhr; Gerdt Müller; Piotr Chylenski; Morten Skaugen; Zarah Forsberg; Svein J. Horn; Gustav Vaaje-Kolstad; Vincent G. H. Eijsink
Enzymes currently known as lytic polysaccharide monooxygenases (LPMOs) play an important role in the conversion of recalcitrant polysaccharides, but their mode of action has remained largely enigmatic. It is generally believed that catalysis by LPMOs requires molecular oxygen and a reductant that delivers two electrons per catalytic cycle. Using enzyme assays, mass spectrometry and experiments with labeled oxygen atoms, we show here that H2O2, rather than O2, is the preferred co-substrate of LPMOs. By controlling H2O2 supply, stable reaction kinetics are achieved, the LPMOs work in the absence of O2, and the reductant is consumed in priming rather than in stoichiometric amounts. The use of H2O2 by a monocopper enzyme that is otherwise cofactor-free offers new perspectives regarding the mode of action of copper enzymes. Furthermore, these findings have implications for the enzymatic conversion of biomass in Nature and in industrial biorefining.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Gaston Courtade; Reinhard Wimmer; Åsmund K. Røhr; Marita Preims; Alfons K. G. Felice; Maria Dimarogona; Gustav Vaaje-Kolstad; Morten Sørlie; Mats Sandgren; Roland Ludwig; Vincent G. H. Eijsink; Finn L. Aachmann
Significance Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are key players in the enzymatic conversion of biomass. LPMOs catalyze oxidative cleavage of glycosidic bonds in a process involving molecular oxygen and an electron donor, such as cellobiose dehydrogenase (CDH). Using protein NMR and isothermal titration calorimetry we have studied the interactions between a fungal LPMO and three soluble substrates and CDH. The results reveal which areas on the LPMO surface interact with the varying substrates and unambiguously show that both the substrate and CDH bind to a region that is centered around the copper site. The data presented here suggest that electron transfer occurs before substrate binding, providing important new leads for understanding the reaction mechanism of LPMOs. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site. NMR studies with xyloglucans, i.e., branched β-glucans, showed an extended binding surface compared with cellohexaose, whereas ITC experiments showed slightly higher affinity and a different thermodynamic signature of binding. The ITC data also showed that although the copper ion alone hardly contributes to affinity, substrate binding is enhanced for metal-loaded enzymes that are supplied with cyanide, a mimic of O2−. Studies with CDH and its isolated heme b cytochrome domain unambiguously showed that the cytochrome domain of CDH interacts with the copper site of the LPMO and that substrate binding precludes interaction with CDH. Apart from providing insights into enzyme–substrate interactions in LPMOs, the present observations shed new light on possible mechanisms for electron supply during LPMO action.
Journal of Bacteriology | 2008
Cecilia L. Næssan; Wolfgang Egge-Jacobsen; Ryan W. Heiniger; Matthew C. Wolfgang; Finn Erik Aas; Åsmund K. Røhr; Hanne C. Winther-Larsen; Michael Koomey
The PilE pilin subunit protein of Neisseria gonorrhoeae undergoes unique covalent modifications with phosphoethanolamine (PE) and phosphocholine (PC). The pilin phospho-form transferase A (PptA) protein, required for these modifications, shows sequence relatedness with and architectural similarities to lipopolysaccharide PE transferases. Here, we used regulated expression and mutagenesis as means to better define the relationships between PptA structure and function, as well as to probe the mechanisms by which other factors impact the system. We show here that pptA expression is coupled at the level of transcription to its distal gene, murF, in a division/cell wall gene operon and that PptA can act in a dose-dependent fashion in PilE phospho-form modification. Molecular modeling and site-directed mutagenesis provided the first direct evidence that PptA is a member of the alkaline phosphatase superfamily of metalloenzymes with similar metal-binding sites and conserved structural folds. Through phylogenetic analyses and sequence alignments, these conclusions were extended to include the lipopolysaccharide PE transferases, including members of the disparate Lpt6 subfamily, and the MdoB family of phosphoglycerol transferases. Each of these enzymes thus likely acts as a phospholipid head group transferase whose catalytic mechanism involves a trans-esterification step generating a protein-phospho-form ester intermediate. Coexpression of PptA with PilE in Pseudomonas aeruginosa resulted in high levels of PE modification but was not sufficient for PC modification. This and other findings show that PptA-associated PC modification is governed by as-yet-undefined ancillary factors unique to N. gonorrhoeae.
Journal of Biological Chemistry | 2011
Mikael Crona; Eduard Torrents; Åsmund K. Røhr; Anders Hofer; Ernst Furrer; Ane B. Tomter; K. Kristoffer Andersson; Margareta Sahlin; Britt-Marie Sjöberg
Background: Class Ib ribonucleotide reductase of the severe pathogen Bacillus anthracis can be loaded with manganese or iron. Results: The manganese form was 10-fold more active than the iron form in the presence of the physiological protein NrdH-redoxin. Conclusion: The manganese form is important in the life cycle of B. anthracis. Significance: The physiologically relevant form of ribonucleotide reductase controls B. anthracis proliferation and survival. Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn2III site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe2III site (Fe-NrdF) formed spontaneously from Fe2+ and O2. In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.
Journal of Biological Chemistry | 2016
Zarah Forsberg; Cassandra E. Nelson; Bjørn Dalhus; Sophanit Mekasha; Jennifer S. M. Loose; Lucy I. Crouch; Åsmund K. Røhr; Jeffrey G. Gardner; Vincent G. H. Eijsink; Gustav Vaaje-Kolstad
Cellvibrio japonicus is a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO, CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of the CjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show that CjLPMO10A is needed by C. japonicus to obtain efficient growth on both purified chitin and crab shell particles.
PLOS ONE | 2012
Thomas Ve; Karina Mathisen; Ronny Helland; Odd André Karlsen; Anne Fjellbirkeland; Åsmund K. Røhr; K. Kristoffer Andersson; Rolf B. Pedersen; Johan R. Lillehaug; Harald B. Jensen
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.