Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aspasia Tsezou is active.

Publication


Featured researches published by Aspasia Tsezou.


PLOS ONE | 2008

Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

Dimitrios Iliopoulos; Konstantinos N. Malizos; Pagona Oikonomou; Aspasia Tsezou

Background Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. Methodology/Principal Findings In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential “interactome” network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. Conclusions/Significance Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets.


Arthritis & Rheumatism | 2010

A Genome-Wide Association Study Identifies an Osteoarthritis Susceptibility Locus on Chromosome 7q22

Kerkhof Hjm.; Rik Lories; Ingrid Meulenbelt; Ingileif Jonsdottir; Ana M. Valdes; P. Arp; Thorvaldur Ingvarsson; Mila Jhamai; Helgi Jonsson; Lisette Stolk; Gudmar Thorleifsson; Guangju Zhai; Feng Zhang; Yanyan Zhu; R. van der Breggen; A J Carr; Michael Doherty; Sally Doherty; David T. Felson; Antonio Gonzalez; Bjarni V. Halldórsson; Deborah J. Hart; Valdimar B. Hauksson; Albert Hofman; Ioannidis Jpa.; Margreet Kloppenburg; Nancy E. Lane; John Loughlin; Frank P. Luyten; Michael C. Nevitt

OBJECTIVE To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. METHODS We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2 OA phenotypes were analyzed in 14,938 OA cases and approximately 39,000 controls. Meta-analyses were performed using the program Comprehensive Meta-analysis, with P values <1 x 10(-7) considered genome-wide significant. RESULTS The C allele of rs3815148 on chromosome 7q22 (minor allele frequency 23%; intron 12 of the COG5 gene) was associated with a 1.14-fold increased risk (95% confidence interval 1.09-1.19) of knee and/or hand OA (P = 8 x 10(-8)) and also with a 30% increased risk of knee OA progression (95% confidence interval 1.03-1.64) (P = 0.03). This SNP is in almost complete linkage disequilibrium with rs3757713 (68 kb upstream of GPR22), which is associated with GPR22 expression levels in lymphoblast cell lines (P = 4 x 10(-12)). Immunohistochemistry experiments revealed that G protein-coupled receptor protein 22 (GPR22) was absent in normal mouse articular cartilage or synovium. However, GPR22-positive chondrocytes were found in the upper layers of the articular cartilage of mouse knee joints that were challenged with in vivo papain treatment or methylated bovine serum albumin treatment. GPR22-positive chondrocyte-like cells were also found in osteophytes in instability-induced OA. CONCLUSION Our findings identify a novel common variant on chromosome 7q22 that influences susceptibility to prevalence and progression of OA. Since the GPR22 gene encodes a G protein-coupled receptor, this is potentially an interesting therapeutic target.


Arthritis & Rheumatism | 2009

Large‐scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand

Evangelos Evangelou; Kay Chapman; Ingrid Meulenbelt; Fotini B. Karassa; John Loughlin; Andrew Carr; Michael Doherty; Sally Doherty; Juan J. Gomez-Reino; Antonio Gonzalez; Bjarni V. Halldórsson; Valdimar B. Hauksson; Albert Hofman; Deborah J. Hart; Shiro Ikegawa; Thorvaldur Ingvarsson; Qing Jiang; Ingileif Jonsdottir; Helgi Jonsson; Hanneke J. M. Kerkhof; Margreet Kloppenburg; Nancy E. Lane; Jia Li; Rik Lories; Joyce B. J. van Meurs; Annu Näkki; Michael C. Nevitt; Julio Rodriguez-Lopez; Dongquan Shi; P. Eline Slagboom

OBJECTIVE GDF5 and FRZB have been proposed as genetic loci conferring susceptibility to osteoarthritis (OA); however, the results of several studies investigating the association of OA with the rs143383 polymorphism of the GDF5 gene or the rs7775 and rs288326 polymorphisms of the FRZB gene have been conflicting or inconclusive. To examine these associations, we performed a large-scale meta-analysis of individual-level data. METHODS Fourteen teams contributed data on polymorphisms and knee, hip, and hand OA. For rs143383, the total number of cases and controls, respectively, was 5,789 and 7,850 for hip OA, 5,085 and 8,135 for knee OA, and 4,040 and 4,792 for hand OA. For rs7775, the respective sample sizes were 4,352 and 10,843 for hip OA, 3,545 and 6,085 for knee OA, and 4,010 and 5,151 for hand OA, and for rs288326, they were 4,346 and 8,034 for hip OA, 3,595 and 6,106 for knee OA, and 3,982 and 5,152 for hand OA. For each individual study, sex-specific odds ratios (ORs) were calculated for each OA phenotype that had been investigated. The ORs for each phenotype were synthesized using both fixed-effects and random-effects models for allele-based effects, and also for haplotype effects for FRZB. RESULTS A significant random-effects summary OR for knee OA was demonstrated for rs143383 (1.15 [95% confidence interval 1.09-1.22]) (P=9.4x10(-7)), with no significant between-study heterogeneity. Estimates of effect sizes for hip and hand OA were similar, but a large between-study heterogeneity was observed, and statistical significance was borderline (for OA of the hip [P=0.016]) or absent (for OA of the hand [P=0.19]). Analyses for FRZB polymorphisms and haplotypes did not reveal any statistically significant signals, except for a borderline association of rs288326 with hip OA (P=0.019). CONCLUSION Evidence of an association between the GDF5 rs143383 polymorphism and OA is substantially strong, but the genetic effects are consistent across different populations only for knee OA. Findings of this collaborative analysis do not support the notion that FRZB rs7775 or rs288326 has any sizable genetic effect on OA phenotypes.


Annals of the Rheumatic Diseases | 2007

Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention

Dimitrios Iliopoulos; Konstantinos N. Malizos; Aspasia Tsezou

Objective: To investigate whether epigenetic mechanisms can regulate leptin’s expression and affect its downstream targets as metalloproteinases 3,9,13 in osteoarthritic chondrocytes. Methods: DNA methylation in leptin promoter was measured by DNA bisulfite sequencing, and mRNA expression levels were measured by real-time quantitative PCR in osteoarthritic as well as in normal cartilage. Osteoarthritic articular cartilage samples were obtained from two distinct locations of the knee (n = 15); from the main defective area of maximum load (advanced osteoarthritis (OA)) and from adjacent macroscopically intact regions (minimal OA). Using small interference RNA, we tested if leptin downregulation would affect matrix metalloproteinase (MMP)-13 activity. We also evaluated the effect of the demethylating agent, 5′-Aza-2-deoxycytidine (AZA) and of the histone deacetylase inhibitor trichostatin A (TSA) on leptin expression in chondrocyte cultures. Furthermore, we performed chromatin immunoprecipitation in leptin’s promoter area. Results: We found a correlation between leptin expression and DNA methylation and also that leptin controls MMP-13 activity in chondrocytes. Leptin’s downregulation with small interference RNA inhibited MMP-13 expression dramatically. After 5-AZA application in normal chondrocytes, leptin’s methylation was decreased, while its expression was upregulated, and MMP-13 was activated. Furthermore, TSA application in normal chondrocyte cultures increased leptin’s expression. Also, chromatin immunoprecipitation in leptin’s promoter after TSA treatment revealed that histone H3 lysines 9 and 14 were acetylated. Conclusion: We found that epigenetic mechanisms regulate leptin’s expression in chondrocytes affecting its downstream target MMP-13. Small interference RNA against leptin deactivated directly MMP-13, which was upregulated after leptin’s epigenetic reactivation, raising the issue of leptin’s therapeutic potential for osteoarthritis.


Annals of the Rheumatic Diseases | 2011

Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22

Evangelos Evangelou; Ana M. Valdes; Hanneke J. M. Kerkhof; Unnur Styrkarsdottir; Yanyan Zhu; Ingrid Meulenbelt; Rik Lories; Fotini B. Karassa; Przemko Tylzanowski; S.D. Bos; Toru Akune; N K Arden; Andrew Carr; Kay Chapman; L. Adrienne Cupples; Jin Dai; Panos Deloukas; Michael Doherty; Sally Doherty; Gunnar Engström; Antonio Gonzalez; Bjarni V. Halldórsson; Christina L. Hammond; Deborah J. Hart; Hafdis T. Helgadottir; Albert Hofman; Shiro Ikegawa; Thorvaldur Ingvarsson; Qing Jiang; Helgi Jonsson

Objectives Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in older people. It is characterised by changes in joint structure, including degeneration of the articular cartilage, and its aetiology is multifactorial with a strong postulated genetic component. Methods A meta-analysis was performed of four genome-wide association (GWA) studies of 2371 cases of knee OA and 35 909 controls in Caucasian populations. Replication of the top hits was attempted with data from 10 additional replication datasets. Results With a cumulative sample size of 6709 cases and 44 439 controls, one genome-wide significant locus was identified on chromosome 7q22 for knee OA (rs4730250, p=9.2×10−9), thereby confirming its role as a susceptibility locus for OA. Conclusion The associated signal is located within a large (500 kb) linkage disequilibrium block that contains six genes: PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, β), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like) and BCAP29 (B cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.


Annals of the Rheumatic Diseases | 2011

Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study

Kalliope Panoutsopoulou; Lorraine Southam; Katherine S. Elliott; N Wrayner; Guangju Zhai; Claude Beazley; Gudmar Thorleifsson; N K Arden; Andrew Carr; Kay Chapman; Panos Deloukas; Michael Doherty; A. W. McCaskie; William Ollier; Stuart H. Ralston; Tim D. Spector; Ana M. Valdes; Gillian A. Wallis; J M Wilkinson; E Arden; K Battley; Hannah Blackburn; F.J. Blanco; Suzannah Bumpstead; L. A. Cupples; Aaron G. Day-Williams; K Dixon; Sally Doherty; Tonu Esko; Evangelos Evangelou

Objectives The genetic aetiology of osteoarthritis has not yet been elucidated. To enable a well-powered genome-wide association study (GWAS) for osteoarthritis, the authors have formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here the authors report the findings of the stage 1 interim analysis. Methods The authors have performed a genome-wide association scan for knee and hip osteoarthritis in 3177 cases and 4894 population-based controls from the UK. Replication of promising signals was carried out in silico in five further scans (44 449 individuals), and de novo in 14 534 independent samples, all of European descent. Results None of the association signals the authors identified reach genome-wide levels of statistical significance, therefore stressing the need for corroboration in sample sets of a larger size. Application of analytical approaches to examine the allelic architecture of disease to the stage 1 genome-wide association scan data suggests that osteoarthritis is a highly polygenic disease with multiple risk variants conferring small effects. Conclusions Identifying loci conferring susceptibility to osteoarthritis will require large-scale sample sizes and well-defined phenotypes to minimise heterogeneity.


PLOS ONE | 2010

New Sequence Variants in HLA Class II/III Region Associated with Susceptibility to Knee Osteoarthritis Identified by Genome-Wide Association Study

Masahiro Nakajima; Atsushi Takahashi; Ikuyo Kou; Juan J. Gomez-Reino; Tatsuya Furuichi; Jin Dai; Akihiro Sudo; Atsumasa Uchida; Naoshi Fukui; Michiaki Kubo; Naoyuki Kamatani; Tatsuhiko Tsunoda; Konstantinos N. Malizos; Aspasia Tsezou; Antonio Gonzalez; Yusuke Nakamura; Shiro Ikegawa

Osteoarthritis (OA) is a common disease that has a definite genetic component. Only a few OA susceptibility genes that have definite functional evidence and replication of association have been reported, however. Through a genome-wide association study and a replication using a total of ∼4,800 Japanese subjects, we identified two single nucleotide polymorphisms (SNPs) (rs7775228 and rs10947262) associated with susceptibility to knee OA. The two SNPs were in a region containing HLA class II/III genes and their association reached genome-wide significance (combined P = 2.43×10−8 for rs7775228 and 6.73×10−8 for rs10947262). Our results suggest that immunologic mechanism is implicated in the etiology of OA.


Arthritis & Rheumatism | 2014

Assessment of Osteoarthritis Candidate Genes in a Meta-Analysis of Nine Genome-Wide Association Studies

Manuel Calaza; Evangelos Evangelou; Ana M. Valdes; N K Arden; F.J. Blanco; Andrew Carr; Kay Chapman; Panos Deloukas; Michael Doherty; Tonu Esko; Carlos M. Garcés Aletá; Juan J. Gomez-Reino Carnota; Hafdis T. Helgadottir; Albert Hofman; Ingileif Jonsdottir; Hanneke J. M. Kerkhof; Margreet Kloppenburg; A. W. McCaskie; Evangelia E. Ntzani; William Ollier; Natividad Oreiro; Kalliope Panoutsopoulou; Stuart H. Ralston; Y.F. Ramos; José A. Riancho; Fernando Rivadeneira; P. Eline Slagboom; Unnur Styrkarsdottir; Unnur Thorsteinsdottir; Gudmar Thorleifsson

To assess candidate genes for association with osteoarthritis (OA) and identify promising genetic factors and, secondarily, to assess the candidate gene approach in OA.


Annals of the Rheumatic Diseases | 2014

A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

Evangelos Evangelou; Hanneke J. M. Kerkhof; Unnur Styrkarsdottir; Evangelia E. Ntzani; S.D. Bos; Tonu Esko; Daniel S. Evans; Sarah Metrustry; Kalliope Panoutsopoulou; Y.F. Ramos; Gudmar Thorleifsson; Konstantinos K. Tsilidis; N K Arden; Nadim Aslam; Nicholas Bellamy; Fraser Birrell; F.J. Blanco; Andrew Carr; Kay Chapman; Aaron G. Day-Williams; Panos Deloukas; Michael Doherty; Gunnar Engström; Hafdis T. Helgadottir; Albert Hofman; Thorvaldur Ingvarsson; Helgi Jonsson; Aime Keis; J. Christiaan Keurentjes; Margreet Kloppenburg

Objectives Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects. Methods We performed a two-stage meta-analysis on more than 78 000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for ‘in silico’ or ‘de novo’ replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used. Results We accumulated 11 277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9×10−9 and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p=5.6×10−8) and follow-up studies (p=7.3×10−4). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9×10−7, OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2×10−6, OR=1.27 in male specific analysis). Conclusions Novel genetic loci for hip OA were found in this meta-analysis of GWAS.


Progress in Lipid Research | 2011

Lipid metabolism and osteoarthritis: lessons from atherosclerosis.

Vasiliki Gkretsi; Theodora Simopoulou; Aspasia Tsezou

Osteoarthritis (OA) is an age-related degenerative disease comprising the main reason of handicap in the Western world. Interestingly, to date, there are neither available biomarkers for early diagnosis of the disease nor any effective therapy other than symptomatic treatment and joint replacement surgery. OA has long been associated with obesity, mainly due to mechanical overload exerted on the joints. Recent studies however, point to the direction that OA is a metabolic disease, as it also involves non-weight bearing joints. In fact, altered lipid metabolism may be the underlying cause. First, adipokines have been shown to be key regulators of OA pathogenesis. Second, epidemiological studies have shown serum cholesterol to be a risk factor for OA development. Third, lipid deposition in the joint is observed at the early stages of OA before the occurrence of histological changes. Fourth, proteomic analyses have shown an important connection between OA and lipid metabolism. Finally, recent gene expression studies reveal a deregulation of cholesterol influx and efflux and in the expression of lipid metabolism-related genes. Interestingly, lipids and lipid metabolism are known to be implicated in the development and progression of another age-related degenerative disease, atherosclerosis (ATH). Thus, although it is tempting to speculate that the osteoarthritic chondrocyte has been transformed to foam cell, it has not been proven yet. However, this may be an intriguing theory linking ATH and OA, which may open new avenues to novel therapeutic interventions for OA taking advantage of previous knowledge from ATH.

Collaboration


Dive into the Aspasia Tsezou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Gonzalez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Andrew Carr

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Juan J. Gomez-Reino

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Meulenbelt

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Valdes

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margreet Kloppenburg

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge