Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aspen T. Reese is active.

Publication


Featured researches published by Aspen T. Reese.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Trophic cascade alters ecosystem carbon exchange

Michael S. Strickland; Dror Hawlena; Aspen T. Reese; Mark A. Bradford; Oswald J. Schmitz

Trophic cascades—the indirect effects of carnivores on plants mediated by herbivores—are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.


Journal of Mammalogy | 2013

Using hand proportions to test taxonomic boundaries within the Tupaia glis species complex (Scandentia, Tupaiidae)

Eric J. Sargis; Neal Woodman; Aspen T. Reese; Link E. Olson

Abstract Treeshrews (order Scandentia) comprise 2 families of squirrel-sized terrestrial, arboreal, and scansorial mammals distributed throughout much of tropical South and Southeast Asia. The last comprehensive taxonomic revision of treeshrews was published in 1913, and a well-supported phylogeny clarifying relationships among all currently recognized extant species within the order has only recently been published. Within the family Tupaiidae, 2 widely distributed species, the northern treeshrew, Tupaia belangeri (Wagner, 1841), and the common treeshrew, T. glis (Diard, 1820), represent a particularly vexing taxonomic complex. These 2 species are currently distinguished primarily based on their respective distributions north and south of the Isthmus of Kra on the Malay Peninsula and on their different mammae counts. This problematic species complex includes 54 published synonyms, many of which represent putative island endemics. The widespread T. glis and T. belangeri collectively comprise a monophyletic assemblage representing the sister lineage to a clade composed of the golden-bellied treeshrew, T. chrysogaster Miller, 1903 (Mentawai Islands), and the long-footed treeshrew, T. longipes (Thomas, 1893) (Borneo). As part of a morphological investigation of the T. glis–T. belangeri complex, we studied the proportions of hand bones, which have previously been shown to be useful in discriminating species of soricids (true shrews). We measured 38 variables from digital X-ray images of 148 museum study skins representing several subspecies of T. glis, T. belangeri, T. chrysogaster, and T. longipes and analyzed these data using principal components and cluster analyses. Manus proportions among these 4 species readily distinguish them, particularly in the cases of T. chrysogaster and T. longipes. We then tested the distinctiveness of several of the populations comprising T. glis and T. longipes. T. longipes longipes and T. l. salatana Lyon, 1913, are distinguishable from each other, and populations of T. “glis” from Bangka Island and Sumatra are distinct from those on the Malay Peninsula, supporting the recognition of T. salatana, T. discolor Lyon, 1906, and T. ferruginea Raffles, 1821 as distinct species in Indonesia. These relatively small, potentially vulnerable treeshrew populations occur in the Sundaland biodiversity hotspot and will require additional study to determine their appropriate conservation status.


Journal of Morphology | 2013

Skeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae)

Aspen T. Reese; Hayley C. Lanier; Eric J. Sargis

Pika species generally fall into two ecotypes, meadow‐dwelling (burrowing) or talus‐dwelling, a classification that distinguishes a suite of different ecological, behavioral, and life history traits. Despite these differences, little morphological variation has previously been documented to distinguish among ecotypes. The aim of this study was to test whether postcranial features related to burrowing are present in meadow‐dwelling species and whether talus‐dwelling species exhibit postcranial modifications related to frequent leaping between rocks. To test this, the scapula, humerus, ulna, radius, innominate, femur, tibia, and calcaneus of 15 species were studied and measured. Twenty‐three measurements were taken on 199 skeletons, and 19 indices were constructed from these measurements. Indices were compared between the two ecotypes using Students t‐test. Comparisons among ecotypes, species, and subgenera were made using one‐way ANOVA with the Tukey honest significant difference post hoc test. Multivariate results were generated using principal components analyses. Thirteen forelimb and hind limb indices proved significant in distinguishing the meadow‐dwelling, talus‐dwelling, and intermediate forms. A number of these indices are associated with burrowing or leaping in other mammals, providing some support for the hypothesis that postcranial modifications in pika are related to locomotor differences. This evidence of morphological responses to ecological specialization will be useful for reconstructing the paleobiology of extinct taxa, assessing the behavioral variability of extant species, and improving our understanding of the evolutionary history of pikas. J. Morphol., 2013.


Journal of Mammalogy | 2013

Morphological distinctiveness of Javan Tupaia hypochrysa (Scandentia, Tupaiidae)

Eric J. Sargis; Neal Woodman; Natalie C. Morningstar; Aspen T. Reese; Link E. Olson

Abstract The common treeshrew, Tupaia glis, represents a species complex with a complicated taxonomic history. It is distributed mostly south of the Isthmus of Kra on the Malay Peninsula and surrounding islands. In our recent revision of a portion of this species complex, we did not fully assess the population from Java (T. “glis” hypochrysa) because of our limited sample. Herein, we revisit this taxon using multivariate analyses in comparisons with T. glis, T. chrysogaster of the Mentawai Islands, and T. ferruginea from Sumatra. Analyses of both the manus and skull of Javan T. “glis” hypochrysa show it to be most similar to T. chrysogaster and distinct from both T. glis and T. ferruginea. Yet, the Javan population and T. chrysogaster have different mammae counts, supporting recognition of T. hypochrysa as a distinct species. The change in taxonomic status of T. hypochrysa has conservation implications for both T. glis and this Javan endemic.


PLOS ONE | 2016

Variation in Plant Response to Herbivory Underscored by Functional Traits.

Aspen T. Reese; Gregory M. Ames; Justin P. Wright

The effects of herbivory can shape plant communities and evolution. However, the many forms of herbivory costs and the wide variation in herbivory pressure, including across latitudinal gradients, can make predicting the effects of herbivory on different plant species difficult. Functional trait approaches may aid in contextualizing and standardizing the assessment of herbivory impacts. Here we assessed the response of 26 old-field plant species to simulated defoliation in a greenhouse setting by measuring whole plant and leaf level traits in control and treated individuals. Simulated defoliation had no significant effects on any plant traits measured. However, the baseline leaf level traits of healthy plants consistently predicted the log response ratio for these species whole plant response to defoliation. The latitudinal mid-point of species’ distributions was also significantly correlated with aboveground biomass and total leaf area responses, with plants with a more northern distribution being more negatively impacted by treatment. These results indicate that even in the absence of significant overall impacts, functional traits may aid in predicting variability in plant responses to defoliation and in identifying the underlying limitations driving those responses.


eLife | 2018

Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut

Aspen T. Reese; Eugenia H. Cho; Bruce Klitzman; Scott P. Nichols; Natalie A. Wisniewski; Max M Villa; Heather K Durand; Sharon Jiang; Firas S Midani; Sai N Nimmagadda; Thomas M O'Connell; Justin P. Wright; Marc A. Deshusses; Lawrence A. David

How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration.


The Journal of Infectious Diseases | 2018

Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection

Firas S Midani; Ana A. Weil; Fahima Chowdhury; Yasmin Ara Begum; Ashraful I. Khan; Meti D Debela; Heather K Durand; Aspen T. Reese; Sai N Nimmagadda; Justin D Silverman; Crystal N. Ellis; Edward T. Ryan; Stephen B. Calderwood; Jason B. Harris; Firdausi Qadri; Lawrence A. David; Regina C. LaRocque

Background Cholera is a public health problem worldwide, and the risk factors for infection are only partially understood. Methods We prospectively studied household contacts of patients with cholera to compare those who were infected to those who were not. We constructed predictive machine learning models of susceptibility, using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. Results We found that machine learning models based on gut microbiota, as well as models based on known clinical and epidemiological risk factors, predicted V. cholerae infection. A predictive gut microbiota of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. Conclusion These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.


Nature microbiology | 2018

Microbial nitrogen limitation in the mammalian large intestine

Aspen T. Reese; Fátima C. Pereira; Arno Schintlmeister; David Berry; Michael Wagner; Laura P. Hale; Anchi Wu; Sharon Jiang; Heather K Durand; Xiyou Zhou; Richard T. Premont; Anna Mae Diehl; Thomas M. O’Connell; Susan C. Alberts; Tyler R. Kartzinel; Robert M. Pringle; Robert R. Dunn; Justin P. Wright; Lawrence A. David

Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host–microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems.Faecal carbon:nitrogen measurements and manipulation of nitrogen availability via diet and host secretions in a murine model suggest that intestinal nitrogen limitation occurs due to host absorption and microbial use, leading to benefits for specific taxa.


Ecology and Evolution | 2018

Plant community and soil conditions individually affect soil microbial community assembly in experimental mesocosms

Aspen T. Reese; Kyrstin Lulow; Lawrence A. David; Justin P. Wright

Abstract Soils harbor large, diverse microbial communities critical for local and global ecosystem functioning that are controlled by multiple and poorly understood processes. In particular, while there is observational evidence of relationships between both biotic and abiotic conditions and microbial composition and diversity, there have been few experimental tests to determine the relative importance of these two sets of factors at local scales. Here, we report the results of a fully factorial experiment manipulating soil conditions and plant cover on old‐field mesocosms across a latitudinal gradient. The largest contributor to beta diversity was site‐to‐site variation, but, having corrected for that, we observed significant effects of both plant and soil treatments on microbial composition. Separate phyla were associated with each treatment type, and no interactions between soil and plant treatment were observed. Individual soil characteristics and biotic parameters were also associated with overall beta‐diversity patterns and phyla abundance. In contrast, soil microbial diversity was only associated with site and not experimental treatment. Overall, plant community treatment explained more variation than soil treatment, a result not previously appreciated because it is difficult to dissociate plant community composition and soil conditions in observational studies across gradients. This work highlights the need for more nuanced, multifactorial experiments in microbial ecology and in particular indicates a greater focus on relationships between plant composition and microbial composition during community assembly.


Biological Journal of The Linnean Society | 2014

Island history affects faunal composition: the treeshrews (Mammalia: Scandentia: Tupaiidae) from the Mentawai and Batu Islands, Indonesia

Eric J. Sargis; Neal Woodman; Natalie C. Morningstar; Aspen T. Reese; Link E. Olson

Collaboration


Dive into the Aspen T. Reese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Link E. Olson

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal Woodman

National Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge