Assaf Alon
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Assaf Alon.
Nature | 2011
Frank DiMaio; Thomas C. Terwilliger; Randy J. Read; Alexander Wlodawer; Gustav Oberdorfer; Ulrike Wagner; Eugene Valkov; Assaf Alon; Deborah Fass; Herbert L. Axelrod; Debanu Das; Sergey M. Vorobiev; Hideo Iwai; P. Raj Pokkuluri; David Baker
Molecular replacement procedures, which search for placements of a starting model within the crystallographic unit cell that best account for the measured diffraction amplitudes, followed by automatic chain tracing methods, have allowed the rapid solution of large numbers of protein crystal structures. Despite extensive work, molecular replacement or the subsequent rebuilding usually fail with more divergent starting models based on remote homologues with less than 30% sequence identity. Here we show that this limitation can be substantially reduced by combining algorithms for protein structure modelling with those developed for crystallographic structure determination. An approach integrating Rosetta structure modelling with Autobuild chain tracing yielded high-resolution structures for 8 of 13 X-ray diffraction data sets that could not be solved in the laboratories of expert crystallographers and that remained unsolved after application of an extensive array of alternative approaches. We estimate that the new method should allow rapid structure determination without experimental phase information for over half the cases where current methods fail, given diffraction data sets of better than 3.2 Å resolution, four or fewer copies in the asymmetric unit, and the availability of structures of homologous proteins with >20% sequence identity.
Science | 2013
Tal Ilani; Assaf Alon; Iris Grossman; Ben Horowitz; Elena Kartvelishvily; Sidney R. Cohen; Deborah Fass
Form and Function The contribution of disulfide bonding to oxidative protein folding and assembly, quality control, and stress responses in the endoplasmic reticulum (ER) are widely recognized. In contrast, catalysis of disulfide bond formation downstream of the ER is uncharted territory. QSOX, a Golgi-localized or secreted disulfide catalyst, was identified in the 1970s and was more recently shown to be upregulated in many cancers. However, the physiological importance of QSOX catalytic activity has been unclear. Ilani et al. (p. 74, published online 23 May) found that human QSOX1 is essential for incorporation of laminin into the extracellular matrix, with profound effects on the capability of the matrix to support integrin-mediated cell adhesion and migration. Laminin incorporation is promoted by a secreted enzyme, which is important for cell adhesion and migration. Disulfide bond formation in secretory proteins occurs primarily in the endoplasmic reticulum (ER), where multiple enzyme families catalyze cysteine cross-linking. Quiescin sulfhydryl oxidase 1 (QSOX1) is an atypical disulfide catalyst, localized to the Golgi apparatus or secreted from cells. We examined the physiological function for extracellular catalysis of de novo disulfide bond formation by QSOX1. QSOX1 activity was required for incorporation of laminin into the extracellular matrix (ECM) synthesized by fibroblasts, and ECM produced without QSOX1 was defective in supporting cell-matrix adhesion. We developed an inhibitory monoclonal antibody against QSOX1 that could modulate ECM properties and undermine cell migration.
Biochemistry | 2008
Erin J. Heckler; Assaf Alon; Deborah Fass; Colin Thorpe
The flavoprotein quiescin-sulfhydryl oxidase (QSOX) rapidly inserts disulfide bonds into unfolded, reduced proteins with the concomitant reduction of oxygen to hydrogen peroxide. This study reports the first heterologous expression and enzymological characterization of a human QSOX1 isoform. Like QSOX isolated from avian egg white, recombinant HsQSOX1 is highly active toward reduced ribonuclease A (RNase) and dithiothreitol but shows a >100-fold lower k cat/ K m for reduced glutathione. Previous studies on avian QSOX led to a model in which reducing equivalents were proposed to relay through the enzyme from the first thioredoxin domain (C70-C73) to a distal disulfide (C509-C512), then across the dimer interface to the FAD-proximal disulfide (C449-C452), and finally to the FAD. The present work shows that, unlike the native avian enzyme, HsQSOX1 is monomeric. The recombinant expression system enabled construction of the first cysteine mutants for mechanistic dissection of this enzyme family. Activity assays with mutant HsQSOX1 indicated that the conserved distal C509-C512 disulfide is dispensable for the oxidation of reduced RNase or dithiothreitol. The four other cysteine residues chosen for mutagenesis, C70, C73, C449, and C452, are all crucial for efficient oxidation of reduced RNase. C452, of the proximal disulfide, is shown to be the charge-transfer donor to the flavin ring of QSOX, and its partner, C449, is expected to be the interchange thiol, forming a mixed disulfide with C70 in the thioredoxin domain. These data demonstrate that all the internal redox steps occur within the same polypeptide chain of mammalian QSOX and commence with a direct interaction between the reduced thioredoxin domain and the proximal disulfide of the Erv/ALR domain.
Nature | 2012
Assaf Alon; Iris Grossman; Yair Gat; Vamsi K. Kodali; Frank DiMaio; Tevie Mehlman; Gilad Haran; David Baker; Colin Thorpe; Deborah Fass
Protein stability, assembly, localization and regulation often depend on the formation of disulphide crosslinks between cysteine side chains. Enzymes known as sulphydryl oxidases catalyse de novo disulphide formation and initiate intra- and intermolecular dithiol/disulphide relays to deliver the disulphides to substrate proteins. Quiescin sulphydryl oxidase (QSOX) is a unique, multi-domain disulphide catalyst that is localized primarily to the Golgi apparatus and secreted fluids and has attracted attention owing to its overproduction in tumours. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulphide-formation pathways. How disulphides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. Here we present the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulphide relay were found more than 40 Å apart in this structure, too far for direct disulphide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulphide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulphide-bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented here, shows further biochemical features that facilitate disulphide transfer in metazoan orthologues. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of new catalytic relays.
FEBS Letters | 2010
Assaf Alon; Erin J. Heckler; Colin Thorpe; Deborah Fass
Quiescin sulfhydryl oxidase (QSOX) catalyzes formation of disulfide bonds between cysteine residues in substrate proteins. Human QSOX1 is a multi‐domain, monomeric enzyme containing a module related to the single‐domain sulfhydryl oxidases of the Erv family. A partial QSOX1 crystal structure reveals a single‐chain pseudo‐dimer mimicking the quaternary structure of Erv enzymes. However, one pseudo‐dimer “subunit” has lost its cofactor and catalytic activity. In QSOX evolution, a further concatenation to a member of the protein disulfide isomerase family resulted in an enzyme capable of both disulfide formation and efficient transfer to substrate proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Assaf Alon; Hayden R. Schmidt; Michael D. Wood; James J. Sahn; Stephen F. Martin; Andrew C. Kruse
Significance Of the many receptors that were pharmacologically described during the 20th century, almost all were cloned by the end of the 1990s. A key exception is the σ2 receptor, a potential therapeutic target for diseases as diverse as schizophrenia, Alzheimer’s disease, and cancer. Despite the development of a rich pharmacopeia, the unknown molecular identity of the receptor has crippled biological investigation. Here, we identify the σ2 receptor as TMEM97, a membrane protein implicated in cancer and a binding partner of Niemann–Pick disease protein NPC1. Our results unite two fields of research, bringing the σ2 receptor into the modern age of biological inquiry and providing the TMEM97 field with a rich pool of ligands and pharmacological tools. The σ2 receptor is an enigmatic protein that has attracted significant attention because of its involvement in diseases as diverse as cancer and neurological disorders. Unlike virtually all other receptors of medical interest, it has eluded molecular cloning since its discovery, and the gene that codes for the receptor remains unknown, precluding the use of modern biological methods to study its function. Using a chemical biology approach, we purified the σ2 receptor from tissue, revealing its identity as TMEM97, an endoplasmic reticulum-resident transmembrane protein that regulates the sterol transporter NPC1. We show that TMEM97 possesses the full suite of molecular properties that define the σ2 receptor, and we identify Asp29 and Asp56 as essential for ligand recognition. Cloning the σ2 receptor resolves a longstanding mystery and will enable therapeutic targeting of this potential drug target.
Proteins | 2015
Gideon Lapidoth; Dror Baran; Gabriele M. Pszolla; Christoffer Norn; Assaf Alon; Michael D. Tyka; Sarel J. Fleishman
Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function—essential to exert control over all polypeptide degrees of freedom—remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high‐affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root‐mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti‐lysozyme antibodies, complementarity‐determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. Proteins 2015; 83:1385–1406.
Journal of Molecular Biology | 2013
Iris Grossman; Assaf Alon; Tal Ilani; Deborah Fass
Quiescin sulfhydryl oxidase 1 (QSOX1) is a catalyst of disulfide bond formation that undergoes regulated secretion from fibroblasts and is over-produced in adenocarcinomas and other cancers. We have recently shown that QSOX1 is required for incorporation of particular laminin isoforms into the extracellular matrix (ECM) of cultured fibroblasts and, as a consequence, for tumor cell adhesion to and penetration of the ECM. The known role of laminins in integrin-mediated cell survival and motility suggests that controlling QSOX1 activity may provide a novel means of combating metastatic disease. With this motivation, we developed a monoclonal antibody that inhibits the activity of human QSOX1. Here, we present the biochemical and structural characterization of this antibody and demonstrate that it is a tight-binding inhibitor that blocks one of the redox-active sites in the enzyme, but not the site at which de novo disulfides are generated catalytically. Sulfhydryl oxidase activity is thus prevented without direct binding of the sulfhydryl oxidase domain, confirming the model for the interdomain QSOX1 electron transfer mechanism originally surmised based on mutagenesis and protein dissection. In addition, we developed a single-chain variant of the antibody and show that it is a potent QSOX1 inhibitor. The QSOX1 inhibitory antibody will be a valuable tool in studying the role of ECM composition and architecture in cell migration, and the recombinant version may be further developed for potential therapeutic applications based on manipulation of the tumor microenvironment.
PLOS ONE | 2012
Motti Hakim; Daria Ezerina; Assaf Alon; Ohad Vonshak; Deborah Fass
The mimivirus genome contains many genes that lack homologs in the sequence database and are thus known as ORFans. In addition, mimivirus genes that encode proteins belonging to known fold families are in some cases fused to domain-sized segments that cannot be classified. One such ORFan region is present in the mimivirus enzyme R596, a member of the Erv family of sulfhydryl oxidases. We determined the structure of a variant of full-length R596 and observed that the carboxy-terminal region of R596 assumes a folded, compact domain, demonstrating that these ORFan segments can be stable structural units. Moreover, the R596 ORFan domain fold is novel, hinting at the potential wealth of protein structural innovation yet to be discovered in large double-stranded DNA viruses. In the context of the R596 dimer, the ORFan domain contributes to formation of a broad cleft enriched with exposed aromatic groups and basic side chains, which may function in binding target proteins or localization of the enzyme within the virus factory or virions. Finally, we find evidence for an intermolecular dithiol/disulfide relay within the mimivirus R596 dimer, the first such extended, intersubunit redox-active site identified in a viral sulfhydryl oxidase.
FEBS Letters | 2012
Keren Limor-Waisberg; Assaf Alon; Tevie Mehlman; Deborah Fass
Quiescin Sulfhydryl Oxidase (QSOX), a catalyst of disulfide bond formation, is found in both plants and animals. Mammalian, avian, and trypanosomal QSOX enzymes have been studied in detail, but plant QSOX has yet to be characterized. Differences between plant and animal QSOXs in domain composition and active‐site sequences raise the question of whether these QSOXs function by the same mechanism. We demonstrate that Arabidopsis thaliana QSOX produced in bacteria is folded and functional as a sulfhydryl oxidase but does not exhibit the interdomain electron transfer observed for its animal counterpart. Based on this finding, further exploration into the respective roles of the redox‐active sites in plant QSOX and the reason for their concatenation is warranted.