Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asta Juzeniene is active.

Publication


Featured researches published by Asta Juzeniene.


Reports on Progress in Physics | 2008

Lasers in medicine

Qian Peng; Asta Juzeniene; Jiyao Chen; Lars O. Svaasand; Trond Warloe; Karl Erik Giercksky; Johan Moan

It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser-tissue interactions, therapeutics and diagnostics.


Current Medicinal Chemistry - Anti-cancer Agents | 2004

On the Selectivity of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Formation

Sabine Collaud; Asta Juzeniene; Johan Moan; Norbert Lange

Due to its capability to induce accumulation of protoporphyrin IX (PpIX) selectively in a multitude of different pathologies, 5-aminolevulinic acid (ALA) and its derivatives have attracted enormous attention in the field of photodynamic therapy (PDT) in the past two decades. The photochemical and photophysical properties of PpIX have been used for the fluorescence photodetection and photodynamic treatment of neoplasms in several medical indications in which conversion of ALA into PpIX seems to take place preferentially. Recently, this has led to the approval of this therapy for the treatment of actinic keratosis and basal cell carcinoma. When applied topically or systemically, ALA bypasses the negative feedback control that haem exerts on the enzyme ALA synthase (ALAS), which catalyses the natural production of this delta-amino acid, thereby temporarily boosting the generation of PpIX, the direct precursor of haem. Despite considerable interest in this treatment methodology, only little is known concerning the reasons for the selective accumulation of PpIX in neoplastic tissue upon ALA administration. Following an introduction into the biochemical as well as the chemical principles of haem synthesis, the present review tries to summarise experimental evidences of the mechanisms underlying preferential production of PpIX in neoplastic tissues. Thereby, morphological, environmental, enzymatic, as well as cell-specific factors will be discussed.


Journal of Controlled Release | 2008

Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy.

Ryan F. Donnelly; Desmond I. J. Morrow; Paul A. McCarron; A. David Woolfson; Anthony Morrissey; Petras Juzenas; Asta Juzeniene; Vladimir Iani; Helen O. McCarthy; Johan Moan

Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA). In this study, silicon microneedle arrays were used, for the first time, to enhance skin penetration of ALA in vitro and in vivo. Puncturing excised murine skin with 6 x 7 arrays of microneedles 270 microm in height, with a diameter of 240 mum at the base and an interspacing of 750 microm led to a significant increase in transdermal delivery of ALA released from a bioadhesive patch containing 19 mg ALA cm(-2). Microneedle puncture enhanced ALA delivery to the upper regions of excised porcine skin but, at mean depths of 1.875 mm, ALA concentrations were similar to control values, possibly reflecting binding of ALA by tissue components. However, and importantly, in vivo experiments using nude mice showed that microneedle puncture could reduce application time and ALA dose required to induce high levels of the photosensitizer protoporphyrin IX in skin. This clearly has implications for clinical practice, as shorter application times would mean improved patient and clinician convenience and also that more patients could be treated in the same session. As ALA is expensive and degrades rapidly via a second order reaction, reducing the required dose is also a notable advantage.


Reports on Progress in Physics | 2011

Solar radiation and human health

Asta Juzeniene; Pal Brekke; Arne Dahlback; Stefan Andersson-Engels; Joerg Reichrath; Kristin Moan; Michael F. Holick; William B. Grant; Johan Moan

The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.


Photochemistry and Photobiology | 2002

Topical Application of 5-Aminolevulinic Acid and its Methylester, Hexylester and Octylester Derivatives: Considerations for Dosimetry in Mouse Skin Model¶

Asta Juzeniene; Petras Juzenas; Vladimir Iani; Johan Moan

Abstract Ester derivatives of 5-aminolevulinic acid (ALA-esters) have been proposed as alternative drugs for ALA in photodynamic therapy. After topical application of creams containing ALA, ALA methylester (ALA-Me), ALA hexylester (ALA-Hex) and ALA octylester (ALA-Oct) on mouse skin, typical fluorescence excitation and emission spectra of protoporphyrin IX (PpIX) were recorded, exhibiting a similar spectral shape for all the drugs in the range of concentrations (0.5–20%) studied. The accumulation kinetics of PpIX followed nearly a similar profile for all the drug formulations. The fluorescence of PpIX peaked at around 6–12 h of continuous cream application. Nevertheless, some differences in pharmacokinetics were noticed. For ALA cream, the highest PpIX fluorescence was achieved using 20% of ALA in an ointment. Conversely, 10% of ALA-Me and ALA-Hex, but not of ALA-Oct, in the cream was more efficient (P < 0.05) than was 20%. The cream becomes rather fluid when 20% of any of these ALA-esters is used in ointment, whereas 10% and lower concentrations of ALA-esters do not significantly increase fluidity of the cream. The dependence of PpIX accumulation on the concentration of ALA and ALA-ester in the applied cream followed (P < 0.002) kinetics as described by a mathematical model based on the Michaelis–Menten equation for enzymatic processes. Under the present conditions, the PpIX amount in the skin increased by around 50% by the application of ALA-Me, ALA-Hex or ALA-Oct for 4–12 h as compared with ALA for the same period. Observations of the mice under exposure to blue light showed that after 8–24 h of continuous application of ALA, the whole mouse was fluorescent, whereas in the case of ALA-Me, ALA-Hex and ALA-Oct the fluorescence of PpIX was located only at the area of initial cream application. The amount of the active compound in the applied cream necessary to induce 90% of the maximal amount of PpIX was determined for normal mouse skin. Optimal PpIX fluorescence can be attained using around 5% ALA, 10% ALA-Me and 5% ALA-Hex creams during short application times (2–4 h). Topical application of ALA-Oct may not gain optimal PpIX accumulation for short applications (<5 h). For long application times (8–12 h), it seems that around 1% ALA, 4% ALA-Me, 6% ALA-Hex and 16% ALA-Oct can give optimal PpIX fluorescence. But for long application times and high concentrations, systemic effect of ALA applied topically on relatively large areas should be considered.


International Journal of Cancer | 2003

Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters

Johan Moan; Li Wei Ma; Asta Juzeniene; Vladimir Iani; Petras Juzenas; Fabio Apricena; Qian Peng

Aminolevulinic acid (ALA), ALA methylester (ALA‐Me) and ALA hexylester (ALA‐Hex) were topically applied for 5 and 20 hr, respectively, on normal skin of mice. The distribution of protoporphyrin IX (PpIX) induced in 7 different tissues by these drugs was determined either by spectrofluorometric measurements with an optical fibre probe or by chemical extraction of PpIX from the tissues. The results from these 2 types of measurements were compared. Both methods showed that ALA and the esters induced similar amounts of PpIX at the skin spot where they were applied and that the esters produced much less PpIX at remote skin spots (i.e., spots outside the location where the drugs were applied) than ALA did, notably after 20 hr application. After 20 hr of drug application ALA produced much more PpIX in liver, intestine and lungs than the esters did. In contrast with the direct fluorescence measurements, the extraction method showed detectable amounts of PpIX in liver, intestine and lung after application of the esters, notably of ALA‐Me. The discrepancy is probably related to the fact that the pigmented tissues absorb light and, therefore, the direct fluorescence readings are misleading. Notably in the liver, which contains high concentration of light‐absorbing pigments, very weak direct fluorescence was seen. In no case there was any accumulation of PpIX in muscle tissue nor in brain. The esters seem to penetrate less into the circulation than ALA, and PpIX formed by them in the skin is faster cleared than PpIX formed from ALA. This is also true after oral and i.p. administration of the drugs.


Dermato-endocrinology | 2012

Beneficial effects of UV radiation other than via vitamin D production

Asta Juzeniene; Johan Moan

Most of the positive effects of solar radiation are mediated via ultraviolet-B (UVB) induced production of vitamin D in skin. However, several other pathways may exist for the action of ultraviolet (UV) radiation on humans as focused on in this review. One is induction of cosmetic tanning (immediate pigment darkening, persistent pigment darkening and delayed tanning). UVB-induced, delayed tanning (increases melanin in skin after several days), acts as a sunscreen. Several human skin diseases, like psoriasis, vitiligo, atopic dermatitis and localized scleroderma, can be treated with solar radiation (heliotherapy) or artificial UV radiation (phototherapy). UV exposure can suppress the clinical symptoms of multiple sclerosis independently of vitamin D synthesis. Furthermore, UV generates nitric oxide (NO), which may reduce blood pressure and generally improve cardiovascular health. UVA-induced NO may also have antimicrobial effects and furthermore, act as a neurotransmitter. Finally, UV exposure may improve mood through the release of endorphins.


Experimental Dermatology | 2009

Influence of narrowband UVB phototherapy on vitamin D and folate status

Emanuela Cicarma; Cato Mørk; Alina Carmen Porojnicu; Asta Juzeniene; Tran Thi Thu Tam; Arne Dahlback; Johan Moan

Please cite this paper as: Influence of narrowband UVB phototherapy on vitamin D and folate status. Experimental Dermatology 2010; 19: e67–e72.


Photochemistry and Photobiology | 2009

Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer

Ryan F. Donnelly; Desmond I. J. Morrow; Paul A. McCarron; A. David Woolfson; Anthony Morrissey; Petras Juzenas; Asta Juzeniene; Vladimir Iani; Helen O. McCarthy; Johan Moan

Silicon microneedle (MN) arrays were used to puncture excised murine and porcine skin in vitro and transdermal and intradermal delivery of meso‐tetra (N‐methyl‐4‐pyridyl) porphine tetra tosylate (TMP) investigated using topical application of a bioadhesive patch containing 19 mg TMP cm−2. Animal studies, using nude mice, were then conducted to investigate the in vivo performance of the bioadhesive patch following MN puncture of skin. MN puncture significantly enhanced both intradermal and transdermal delivery of TMP in vitro, though the total amounts of drug delivered (25.22% into porcine skin and 0.07% across murine skin) were still quite small in each case. Notwithstanding this, in vivo experiments showed that MN puncture was capable of permitting a prolonged increase in TMP fluorescence at the site of application. Importantly, fluorescence was negligible at distant sites, meaning systemic delivery of the drug was not sufficient to induce TMP accumulation other than at the application site. In this study we have conclusively demonstrated proof of principle; MN puncture allows true intradermal delivery of a preformed photosensitizer in animal skin models in vitro and in vivo. Importantly, transdermal delivery was much reduced in each case. Increasing MN density would allow increased amounts of photosensitizer to be delivered. However, as MNs create aqueous pores in the stratum corneum, a preformed photosensitizer must possess at least some degree of water solubility in order to permit enhanced intradermal delivery in this way. We believe that use of MN array technology in this way has the potential to significantly improve topical photodynamic therapy of skin tumors.


BMC Dermatology | 2007

Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps.

Helena Gonzalez; Nils Tarras-Wahlberg; Birgitta Strömdahl; Asta Juzeniene; Johan Moan; Olle Larkö; Arne Rosén; Ann Marie Wennberg

BackgroundSunscreens are being widely used to reduce exposure to harmful ultraviolet (UV) radiation. The fact that some sunscreens are photounstable has been known for many years. Since the UV-absorbing ingredients of sunscreens may be photounstable, especially in the long wavelength region, it is of great interest to determine their degradation during exposure to UV radiation. Our aim was to investigate the photostability of seven commercial sunscreen products after natural UV exposure (UVnat) and artificial UV exposure (UVart).MethodsSeven commercial sunscreens were studied with absorption spectroscopy. Sunscreen product, 0.5 mg/cm2, was placed between plates of silica. The area under the curve (AUC) in the spectrum was calculated for UVA (320–400 nm), UVA1 (340–400 nm), UVA2 (320–340 nm) and UVB (290–320 nm) before (AUCbefore) and after (AUCafter) UVart (980 kJ/m2 UVA and 12 kJ/m2 of UVB) and before and after UVnat. If theAUC Index (AUCI), defined as AUCI = AUCafter/AUCbefore, was > 0.80, the sunscreen was considered photostable.ResultsThree sunscreens were unstable after 90 min of UVnat; in the UVA range the AUCI was between 0.41 and 0.76. In the UVB range one of these sunscreens was unstable with an AUCI of 0.75 after 90 min. Three sunscreens were photostable after 120 min of UVnat; in the UVA range the AUCI was between 0.85 and 0.99 and in the UVB range between 0.92 and 1.0. One sunscreen showed in the UVA range an AUCI of 0.87 after UVnat but an AUCI of 0.72 after UVart. Five of the sunscreens were stable in the UVB region.ConclusionThe present study shows that several sunscreens are photounstable in the UVA range after UVnat and UVart. There is a need for a standardized method to measure photostability, and the photostability should be marked on the sunscreen product.

Collaboration


Dive into the Asta Juzeniene's collaboration.

Top Co-Authors

Avatar

Johan Moan

Rikshospitalet–Radiumhospitalet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petras Juzenas

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge