Astrid Bergeat
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Astrid Bergeat.
Astrophysical Journal Supplement Series | 2012
Valentine Wakelam; Eric Herbst; Jean-Christophe Loison; Ian W. M. Smith; V. Chandrasekaran; B. Pavone; N. G. Adams; M. C Bacchus-Montabonel; Astrid Bergeat; K. Beroff; Veronica M. Bierbaum; M. Chabot; A. Dalgarno; E. F. van Dishoeck; Alexandre Faure; Wolf D. Geppert; Dieter Gerlich; Daniele Galli; Eric Hébrard; F. Hersant; Kevin M. Hickson; Pascal Honvault; Stephen J. Klippenstein; S. D. Le Picard; G. Nyman; Pascal Pernot; Stephan Schlemmer; Franck Selsis; Ian R. Sims; Dahbia Talbi
We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.
Astrophysical Journal Supplement Series | 2015
Valentine Wakelam; Jean-Christophe Loison; Eric Herbst; B. Pavone; Astrid Bergeat; K. Beroff; M. Chabot; A. Faure; Daniele Galli; Wolf D. Geppert; Dieter Gerlich; P. Gratier; Nanase Harada; Kevin M. Hickson; Pascal Honvault; Stephen J. Klippenstein; S. D. Le Picard; G. Nyman; M. Ruaud; Stephan Schlemmer; Ian R. Sims; Dahbia Talbi; Jonathan Tennyson
Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reacti ...
Physical Review Letters | 2010
Coralie Berteloite; M. Lara; Astrid Bergeat; Sébastien D. Le Picard; Fabrice Dayou; Kevin M. Hickson; André Canosa; Christian Naulin; Jean-Michel Launay; Ian R. Sims; Michel Costes
We report combined studies on the prototypical S(1D2) + H2 insertion reaction. Kinetics and crossed-beam experiments are performed in experimental conditions approaching the cold energy regime, yielding absolute rate coefficients down to 5.8 K and relative integral cross sections to collision energies as low as 0.68 meV. They are supported by quantum calculations on a potential energy surface treating long-range interactions accurately. All results are consistent and the excitation function behavior is explained in terms of the cumulative contribution of various partial waves.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Julien Daranlot; Ugo Hincelin; Astrid Bergeat; Michel Costes; Jean-Christophe Loison; Valentine Wakelam; Kevin M. Hickson
Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms, each involving two radical-radical reactions, are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N2 formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N2 formation are inefficient, we argue that N2 does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH3 should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.
Journal of Physical Chemistry A | 2009
Eric Hébrard; M. Dobrijevic; Pascal Pernot; Nathalie Carrasco; Astrid Bergeat; Kevin M. Hickson; André Canosa; S. D. Le Picard; Ian R. Sims
The predictivity of photochemical models of Titans atmosphere depends strongly on the precision and accuracy of reaction rates. For many reactions, large uncertainty results from the extrapolation of rate laws to low temperatures. A few reactions have been measured directly at temperatures relevant to Titans atmosphere. In the present study, we observed the consequences of the reduced uncertainty attributed to these reactions. The global predictivity of the model was improved, i.e., most species are predicted with lower uncertainty factors. Nevertheless, high uncertainty factors are still observed, and a new list of key reactions has been established.
Science | 2011
Julien Daranlot; Mohamed Jorfi; Changjian Xie; Astrid Bergeat; Michel Costes; Philippe Caubet; Daiqian Xie; Hua Guo; Pascal Honvault; Kevin M. Hickson
Rates have been measured for a chemical transformation of interstellar interest in which both reagents are unstable. More than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N(4S) + OH(2Π) → H(2S) + NO(2Π) reaction in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds.
Journal of Physical Chemistry A | 2009
Nadia Balucani; Astrid Bergeat; Laura Cartechini; Gian Gualberto Volpi; Piergiorgio Casavecchia; Dimitris Skouteris; Marzio Rosi
The dynamics of the H-displacement channel in the reaction N((2)D) + CH(4) has been investigated by the crossed molecular beam (CMB) technique with mass spectrometric detection and time-of-flight (TOF) analysis at five different collision energies (from 22.2 up to 65.1 kJ/mol). The CMB results have identified two distinct isomers as primary reaction products, methanimine and methylnitrene, the yield of which significantly varies with the total available energy. From the derived center-of-mass product angular and translational energy distributions the reaction micromechanisms, the product energy partitioning and the relative branching ratios of the competing reaction channels leading to the two isomers have been obtained. The interpretation of the scattering results is assisted by new ab initio electronic structure calculations of stationary points and product energetics for the CH(4)N ground state doublet potential energy surface. Differently from previous theoretical studies, both insertion and H-abstraction pathways have been found to be barrierless at all levels of theory employed in this work. A comparison between experimental results on the two isomer branching ratio and RRKM estimates, based on the new electronic structure calculations, confirms the highly nonstatistical nature of the N((2)D) + CH(4) reaction, with the production of the CH(3)N isomer dominated by dynamical effects. The implications for the chemical models of the atmosphere of Titan are discussed.
Journal of Physical Chemistry A | 2008
Francesca Leonori; Raffaele Petrucci; Astrid Bergeat; Kevin M. Hickson; Nadia Balucani; Piergiorgio Casavecchia
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.
Physical Chemistry Chemical Physics | 2008
Nicolas Daugey; Philippe Caubet; Astrid Bergeat; Michel Costes; Kevin M. Hickson
The temperature dependence of the reactions of the dicarbon molecule in its ground singlet (X1Sigma(g)+) and first excited triplet (a 3Pi(u)) states with acetylene, methylacetylene, allene and propene has been studied using a recently constructed continuous supersonic flow reactor. Four Laval nozzles have been designed to access specified temperatures over the range of 77 < or = T < or = 220 K and measurements have been performed at 296 K under subsonic flow conditions. C2 was produced in its two lowest electronic states via the in situ multiphoton dissociation of C2Br4 at 266 nm. The time dependent losses of C2 in these two states in the presence of an excess of co-reagent species were simultaneously followed by laser-induced fluorescence in the Mulliken and Swan bands for the detection of singlet and triplet state C2, respectively. The rate coefficients were measured to be very fast, with values larger than 10(-10) cm3 molecule(-1) s(-1) and up to 5 x 10(-10) cm3 molecule(-1) s(-1). The reactions of 1C2 are seen to be essentially temperature independent from 77 < or = T < or = 296 K whereas the rate coefficients for the 3C2 reactions are seen to increase until they are equivalent to the 1C2 values at 77 K.
Physical Chemistry Chemical Physics | 2009
Jean-Christophe Loison; Astrid Bergeat
The reactions of the CH radical with several unsaturated hydrocarbons C2H2 (acetylene), C2H4 (ethylene), C3H4 (methyl-acetylene and allene), C3H6 (propene) and C4H8 (trans-butene) were studied at room temperature, in a low-pressure fast-flow reactor. CH(X2pi, v = 0) radicals were obtained from the reaction of CHBr3 with potassium atoms. The overall rate constants at 300 K are CH + C2H2: (3.6 +/- 0.6) x 10(-10), CH + C2H4: (3.1 +/- 0.6) x 10(-10), CH + C3H4 (methyl-acetylene): (3.4 +/- 0.6) x 10(-10), CH + C3H4 (allene): (3.6 +/- 0.6) x 10(-10), CH + C3H6 (propene): (4.2 +/- 0.8) x 10(-10) and CH + C4H8 (trans-butene): (4.0 +/- 0.80) x 10(-10) cm3 molecule(-1) s(-1) (errors are cited at the level of +/- 1 sigma). Absolute atomic hydrogen production was determined by vacuum ultra-violet (VUV) resonance fluorescence, H production from the CH + CH4 reaction being used as a reference. Observed H branching ratios for these CH reactions were: C2H2: 0.90 +/- 0.08, C2H4: 0.94 +/- 0.08, C3H4 (methyl-acetylene): 0.98 +/- 0.08, C3H4 (allene): 0.97 +/- 0.08, C3H6 (propene): 0.78 +/- 0.10, C4H8 (trans-butene): 0.69 +/- 0.12 (errors are cited at the level of +/- 1 sigma). A compilation of the available kinetic data on these reactions has been made in order to propose rate coefficients for each possible channel of the different reactions for astrochemical models.