Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Astrid K. Stoker is active.

Publication


Featured researches published by Astrid K. Stoker.


Neuropharmacology | 2008

Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice.

Astrid K. Stoker; Svetlana Semenova; Athina Markou

The aversive aspects of nicotine withdrawal are powerful motivational forces contributing to the tobacco smoking habit. We evaluated measures of affective and somatic aspects of nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Nicotine withdrawal was induced by termination of chronic nicotine delivery through osmotic minipumps or precipitated with the nicotinic acetylcholine receptor (nAChR) antagonists mecamylamine or dihydro-beta-erythroidine (DHbetaE). A rate-independent discrete-trial intracranial self-stimulation threshold procedure was used to assess brain reward function. Anxiety-like behavior and sensorimotor gating were assessed in the light-dark box and prepulse inhibition (PPI) tests, respectively. Acoustic startle response and somatic signs of withdrawal were also evaluated. Spontaneous nicotine withdrawal after 14-day exposure to 10-40 mg/kg/day nicotine induced no alterations in anxiety-like behavior, startle reactivity, PPI, or somatic signs in either strain, and no changes in thresholds in C57BL/6J mice. Extended 28-day exposure to 40 mg/kg/day nicotine induced threshold elevations, increased somatic signs, and anxiety-like behavior 24 h post-nicotine in C57BL/6J mice; thresholds returned to baseline levels by day 4 in nicotine-exposed mice. Mecamylamine or DHbetaE administration induced threshold elevations in nicotine-exposed C57BL/6J mice compared with saline-exposed mice. In conclusion, administration of relatively high nicotine doses over prolonged periods of time induces both the affective and somatic aspects of spontaneous nicotine withdrawal in the mouse, while exposure to nicotine for shorter periods of time is sufficient for nAChR antagonist-precipitated nicotine withdrawal. The current study is one of the first to demonstrate reward deficits associated with both spontaneous and nAChR antagonist-precipitated nicotine withdrawal in C57BL/6J mice.


Psychopharmacology | 2010

The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice

Hwei-Hsien Chen; Astrid K. Stoker; Athina Markou

RationaleMice lacking metabotropic glutamate receptors 5 (mGluR5) exhibit reduced glutamatergic function and behavioral abnormalities, including deficits in prepulse inhibition (PPI) of the startle response that may be relevant to schizophrenia. Thus, these mice are an animal model that may be used for preclinical evaluation of potentially new classes of antipsychotic compounds. Recent clinical studies have suggested several compounds that modulate glutamatergic transmission through distinct mechanisms, such as potentiation of the N-methyl-d-aspartate (NMDA) receptor glycine site, activation of group II mGluR, and activation of glutamate-cysteine antiporters, as being efficacious in the treatment of schizophrenia.ObjectivesThe aim of this work is to evaluate the effects of sarcosine (a selective inhibitor of the glycine transporter 1 [GlyT1]), LY379268 (a group II mGluR agonist), and N-acetylcysteine (a cysteine prodrug that indirectly activates cystine-glutamate antiporters to increase glutamate levels in the extrasynaptic space) on PPI deficits in mGluR5 knockout mice.ResultsSarcosine and N-acetylcysteine, but not LY379268, ameliorated PPI deficits in mGluR5 knockout mice. The ability of N-acetylcysteine to restore PPI deficits was not blocked by the group II mGluR antagonist LY341495, indicating that the effects of N-acetylcysteine were not attributable to activation of group II mGluRs by glutamate.ConclusionsThese findings provide evidence that the interactions between mGluR5 and NMDA receptors are involved in the regulation of PPI and suggest that activation of glutamate receptors, other than group II receptors, by increased endogenous glutamate transmission, may ameliorate the behavioral abnormalities associated with mGluR5 deficiency.


Behavioural Brain Research | 2011

Withdrawal from chronic cocaine administration induces deficits in brain reward function in C57BL/6J mice.

Astrid K. Stoker; Athina Markou

Anhedonia is a major symptom of cocaine withdrawal, whereas euphoria characterizes the effects of acute administration of this drug in humans. These mood states can be measured quantitatively in animals with brain reward thresholds obtained from the intracranial self-stimulation (ICSS) procedure. Studies have previously reported the reward-enhancing effects of acute cocaine administration using the ICSS procedure in mice, but the effects of chronic cocaine administration and withdrawal on brain reward thresholds have not been widely investigated in this species. Cocaine withdrawal was induced in C57BL/6J mice by removal of intraperitoneal osmotic minipumps that delivered cocaine (90 or 180 mg/kg/day, salt) for 72 h. Mice were tested in the ICSS procedure 3-100 h post-pump removal. Anxiety-like behavior was assessed in the light-dark box 24h post-pump removal. After an 18-day washout period, tolerance and sensitization to the reward-enhancing effects of cocaine were assessed by injecting bolus cocaine intraperitoneally (0, 2.5, 5, and 10 mg/kg). The results indicated that 72 h administration of 90 and 180 mg/kg/day cocaine significantly lowered brain reward thresholds. Withdrawal from 90 and 180 mg/kg/day of cocaine administration elevated ICSS thresholds to similar extents. No anxiety-like behavior was observed in the light-dark box during withdrawal from chronic cocaine administration, although the number of transitions between compartments and locomotion in the dark compartment markedly decreased. Chronic cocaine administration did not induce tolerance or sensitization to the reward-enhancing effects of acute cocaine. In conclusion, alterations in mood states induced by cocaine administration and withdrawal in mice can be measured using the ICSS procedure.


Current Opinion in Neurobiology | 2013

Unraveling the neurobiology of nicotine dependence using genetically engineered mice

Astrid K. Stoker; Athina Markou

This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal.


Toxicology and Applied Pharmacology | 2012

Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice.

Ming-Huan Chan; Shiang-Sheng Chung; Astrid K. Stoker; Athina Markou; Hwei-Hsien Chen

Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-d-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure.


Archive | 2011

The Intracranial Self-Stimulation Procedure Provides Quantitative Measures of Brain Reward Function

Astrid K. Stoker; Athina Markou

Since the discovery of the intracranial self-stimulation (ICSS) procedure in the 1950s, studies using this method have greatly expanded our knowledge of the neurobiology of motivation and reward. ICSS is an operant behavioral procedure in which laboratory rodents prepared with stimulating electrodes learn to deliver brief electrical pulses into brain structures that are part of the brain reward pathway. The ICSS procedure is unique because it enables researchers to quantitatively assess brain reward function in laboratory animals. This procedure has predominantly been used in rats until recently and is now also used in mice. With the recent advances in genetic engineering in this species, the mouse serves as an excellent subject for investigating the neurobiology of reward and motivation. The ICSS procedure, however, is often perceived as too difficult and elaborate to perform in mice, despite the advantages of this technique and the unique research opportunities that mice offer. This chapter describes the two most commonly used ICSS procedures in mice – the discrete-trial current-intensity and rate-frequency curve-shift procedures – and provides suggestions for the successful implementation of ICSS in mice.


European Journal of Pharmacology | 2015

Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

Astrid K. Stoker; Michael J. Marks; Athina Markou

The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished function of the β2 nACh receptor subunit may experience less anhedonia during nicotine withdrawal, which may facilitate smoking cessation.


Current topics in behavioral neurosciences | 2015

Neurobiological Bases of Cue- and Nicotine-induced Reinstatement of Nicotine Seeking: Implications for the Development of Smoking Cessation Medications

Astrid K. Stoker; Athina Markou

A better understanding of the neurobiological factors that contribute to relapse to smoking is needed for the development of efficacious smoking cessation medications. Reinstatement procedures allow the preclinical assessment of several factors that contribute to relapse in humans, including re-exposure to nicotine via tobacco smoking and the presentation of stimuli that were previously associated with nicotine administration (i.e., conditioned stimuli). This review provides an integrated discussion of the results of animal studies that used reinstatement procedures to assess the efficacy of pharmacologically targeting various neurotransmitter systems in attenuating the cue- and nicotine-induced reinstatement of nicotine seeking. The results of these animal studies have increased our understanding of the neurobiological processes that mediate the conditioned effects of stimuli that trigger reinstatement to nicotine seeking. Thus, these findings provide important insights into the neurobiological substrates that modulate relapse to tobacco smoking in humans and the ongoing search for novel efficacious smoking cessation medications.


Psychopharmacology | 2015

The group II metabotropic glutamate receptor agonist LY379268 reduces toluene-induced enhancement of brain-stimulation reward and behavioral disturbances

Ming-Huan Chan; Yi-Ling Tsai; Mei-Yi Lee; Astrid K. Stoker; Athina Markou; Hwei-Hsien Chen

RationaleToluene, a widely abused solvent with demonstrated addictive potential in humans, hasbeen reported to negatively modulate N-methyl-D-aspartate receptors (NMDARs) and alter glutamatergicneurotransmission. The group II metabotropic glutamate receptor (mGluR) agonist LY379268 has beenshown to regulate glutamate release transmission and NMDAR function and block toluene-induced locomotorhyperactivity. However, remaining unknown is whether group II mGluRs are involved in the toluene-induced reward-facilitating effect and other behavioral manifestations.ObjectivesThe present study evaluated the effects of LY379268 on toluene-induced reward enhancement, motor incoordination, recognition memory impairment, and social interaction deficits.ResultsOur data demonstrated that LY379268 significantly reversed the toluene-induced lowering of intracranial self-stimulation (ICSS) thresholds and impairments in novel object recognition, rotarod performance, and social interaction with different potencies.ConclusionsThese results indicate a negative modulatory role of group II mGluRs in acute toluene-induced reward-facilitating and behavioral effects and suggest that group II mGluR agonists may have therapeutic potential for toluene addiction and the prevention of toluene intoxication caused by occupational or intentional exposure.


Psychopharmacology | 2012

Involvement of metabotropic glutamate receptor 5 in brain reward deficits associated with cocaine and nicotine withdrawal and somatic signs of nicotine withdrawal.

Astrid K. Stoker; Berend Olivier; Athina Markou

Collaboration


Dive into the Astrid K. Stoker's collaboration.

Top Co-Authors

Avatar

Athina Markou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Marks

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Ming-Huan Chan

National Chengchi University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge