Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asya Rolls is active.

Publication


Featured researches published by Asya Rolls.


PLOS Medicine | 2009

Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice

Ravid Shechter; Anat London; Chen Varol; Catarina Raposo; Melania Cusimano; Gili Yovel; Asya Rolls; Matthias Mack; Stefano Pluchino; Gianvito Martino; Steffen Jung; Michal Schwartz

Using a mouse model of spinal injury, Michal Schwartz and colleagues tested the effect of macrophages on the recovery process and demonstrate an important anti-inflammatory role for a subset of infiltrating monocyte-derived macrophages that is dependent upon their expression of interleukin 10.


Nature Cell Biology | 2007

Toll-like receptors modulate adult hippocampal neurogenesis

Asya Rolls; Ravid Shechter; Anat London; Yaniv Ziv; Ayal Ronen; Rinat Levy; Michal Schwartz

Neurogenesis — the formation of new neurons in the adult brain — is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila and innate immune activity in mammals, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCα/β-dependent activation of the NF-κB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.


Nature Reviews Neuroscience | 2009

The bright side of the glial scar in CNS repair.

Asya Rolls; Ravid Shechter; Michal Schwartz

Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration. Accordingly, scar-modulating treatments have become a leading therapeutic goal in the field of spinal cord injury. However, increasing evidence suggests a beneficial role for this scar tissue as part of the endogenous local immune regulation and repair process. How can these opposing effects be reconciled? Perhaps it is all a matter of timing.


PLOS Medicine | 2008

Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation.

Asya Rolls; Ravid Shechter; Anat London; Yifat Segev; Jasmin Jacob-Hirsch; Ninette Amariglio; Gidon Rechavi; Michal Schwartz

Background Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. Methods and Findings We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-α) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells. Conclusions Our results show that CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia. The distinction made in this study between the beneficial role of CSPG during the acute stage and its deleterious effect at later stages emphasizes the need to retain the endogenous potential of this molecule in repair by controlling its levels at different stages of post-injury repair.


The Journal of Neuroscience | 2004

Dopamine, through the Extracellular Signal-Regulated Kinase Pathway, Downregulates CD4+CD25+ Regulatory T-Cell Activity: Implications for Neurodegeneration

Jonathan Kipnis; Michal Cardon; Hila Avidan; Gil M. Lewitus; Sharon Mordechay; Asya Rolls; Yael Shani; Michal Schwartz

Fighting off neuronal degeneration requires a well controlled T-cell response against self-antigens residing in sites of the CNS damage. The ability to evoke this response is normally suppressed by naturally occurring CD4+CD25+ regulatory T-cells (Treg). No physiological compound that controls Treg activity has yet been identified. Here, we show that dopamine, acting via type 1 dopamine receptors (found here to be preferentially expressed by Treg), reduces the suppressive activity and the adhesive and migratory abilities of Treg. Treg activity was correlated with activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) signaling pathway. Systemic injection of dopamine or an agonist of its type 1 receptors significantly enhanced, via a T-cell-dependent mechanism, protection against neuronal death after CNS mechanical and biochemical injury. These findings shed light on the physiological mechanisms controlling Treg and might open the way to novel therapeutic strategies for downregulating Treg activity (e.g., in neuronal degeneration) or for strengthening it (in autoimmune diseases).


Proceedings of the National Academy of Sciences of the United States of America | 2011

Optogenetic disruption of sleep continuity impairs memory consolidation

Asya Rolls; Damien Colas; Antoine Roger Adamantidis; Matt Carter; Tope Lanre-Amos; H. Craig Heller; Luis de Lecea

Memory consolidation has been proposed as a function of sleep. However, sleep is a complex phenomenon characterized by several features including duration, intensity, and continuity. Sleep continuity is disrupted in different neurological and psychiatric conditions, many of which are accompanied by memory deficits. This finding has raised the question of whether the continuity of sleep is important for memory consolidation. However, current techniques used in sleep research cannot manipulate a single sleep feature while maintaining the others constant. Here, we introduce the use of optogenetics to investigate the role of sleep continuity in memory consolidation. We optogenetically targeted hypocretin/orexin neurons, which play a key role in arousal processes. We used optogenetics to activate these neurons at different intervals in behaving mice and were able to fragment sleep without affecting its overall amount or intensity. Fragmenting sleep after the learning phase of the novel object recognition (NOR) task significantly decreased the performance of mice on the subsequent day, but memory was unaffected if the average duration of sleep episodes was maintained at 62–73% of normal. These findings demonstrate the use of optogenetic activation of arousal-related nuclei as a way to systematically manipulate a specific feature of sleep. We conclude that regardless of the total amount of sleep or sleep intensity, a minimal unit of uninterrupted sleep is crucial for memory consolidation.


The FASEB Journal | 2006

A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration

Asya Rolls; Liora Cahalon; Sharon Bakalash; Hila Avidan; Ofer Lider; Michal Schwartz

Chondroitin sulfate proteoglycan (CSPG), a matrix protein that occurs naturally in the central nervous system (CNS), is considered to be a major inhibitor of axonal regeneration and is known to participate in activation of the inflammatory response. The degradation of CSPG by a specific enzyme, chondroitinase ABC, promotes repair. We postulated that a disaccharidic degradation product of this glycoprotein (CSPG‐DS), generated following such degradation, participates in the modulation of the inflammatory responses and can, therefore, promote recovery in immune‐induced neuropathologies of the CNS, such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveitis (EAU). In these pathologies, the dramatic increase in T cells infiltrating the CNS is far in excess of the numbers needed for regular maintenance. Here, we show that CSPG‐DS markedly alleviated the clinical symptoms of EAE and protected against the neuronal loss in EAU. The last effect was associated with a reduction in the numbers of infiltrating T cells and marked microglia activation. This is further supported by our in vitro results indicating that CSPG‐DS attenuated T cell motility and decreased secretion of the cytokines interferon‐? and tumor necrosis factor‐?. Mechanistically, these effects are associated with an increase in SOCS‐3 levels and a decrease in NF‐?B. Our results point to a potential therapeutic modality, in which a compound derived from an endogenous CNS‐resident molecule, known for its destructive role in CNS recovery, might be helpful in overcoming inflammation‐induced neurodegenerative conditions.


European Journal of Neuroscience | 2004

A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice

Asya Rolls; Hila Avidan; Liora Cahalon; Hadas Schori; Sharon Bakalash; Vladimir Litvak; Sima Lev; Ofer Lider; Michal Schwartz

Chondroitin sulphate proteoglycan (CSPG) inhibits axonal regeneration in the central nervous system (CNS) and its local degradation promotes repair. We postulated that the enzymatic degradation of CSPG generates reparative products. Here we show that an enzymatic degradation product of CSPG, a specific disaccharide (CSPG‐DS), promoted CNS recovery by modulating both neuronal and microglial behaviour. In neurons, acting via a mechanism that involves the PKCα and PYK2 intracellular signalling pathways, CSPG‐DS induced neurite outgrowth and protected against neuronal toxicity and axonal collapse in vitro. In microglia, via a mechanism that involves ERK1/2 and PYK2, CSPG‐DS evoked a response that allowed these cells to manifest a neuroprotective phenotype ex vivo. In vivo, systemically or locally injected CSPG‐DS protected neurons in mice subjected to glutamate or aggregated β‐amyloid intoxication. Our results suggest that treatment with CSPG‐DS might provide a way to promote post‐traumatic recovery, via multiple cellular targets.


Molecular Psychiatry | 2013

Sleep to forget: interference of fear memories during sleep.

Asya Rolls; Megha Makam; Daniel Kroeger; Damien Colas; L de Lecea; H. Craig Heller

Memories are consolidated and strengthened during sleep. Here we show that memories can also be weakened during sleep. We used a fear-conditioning paradigm in mice to condition footshock to an odor (conditioned stimulus (CS)). Twenty-four hours later, presentation of the CS odor during sleep resulted in an enhanced fear response when tested during subsequent wake. However, if the re-exposure of the CS odor during sleep was preceded by bilateral microinjections of a protein synthesis inhibitor into the basolateral amygdala, the subsequent fear response was attenuated. These findings demonstrate that specific fear memories can be selectively reactivated and either strengthened or attenuated during sleep, suggesting the potential for developing sleep therapies for emotional disorders.


Nature Neuroscience | 2017

High-dimensional, single-cell characterization of the brain's immune compartment

Ben Korin; Tamar L Ben-Shaanan; Maya Schiller; Tania Dubovik; Hilla Azulay-Debby; Nadia T Boshnak; Tamar Koren; Asya Rolls

The brain and its borders create a highly dynamic microenvironment populated with immune cells. Yet characterization of immune cells within the naive brain compartment remains limited. In this study, we used CyTOF mass cytometry to characterize the immune populations of the naive mouse brain using 44 cell surface markers. By comparing immune cell composition and cell profiles between the brain compartment and blood, we were able to characterize previously undescribed cell subsets of CD8 T cells, B cells, NK cells and dendritic cells in the naive brain. Using flow cytometry, we show differential distributions of immune populations between meninges, choroid plexus and parenchyma. We demonstrate the phenotypic ranges of resident myeloid cells and identify CD44 as a marker for infiltrating immune populations. This study provides an approach for a system-wide view of immune populations in the brain and is expected to serve as a resource for understanding brain immunity.

Collaboration


Dive into the Asya Rolls's collaboration.

Top Co-Authors

Avatar

Michal Schwartz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ravid Shechter

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anat London

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ayal Ronen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ben Korin

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maya Schiller

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ofer Lider

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sharon Bakalash

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tamar L Ben-Shaanan

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge