Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ata Fallah-Mehrjardi is active.

Publication


Featured researches published by Ata Fallah-Mehrjardi.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2013

Investigation of freeze linings in copper-containing slag systems: Part II. Mechanism of the deposit stabilization

Ata Fallah-Mehrjardi; P. C. Hayes; Evgueni Jak

A major industrial problem in high-temperature liquid reaction systems is the attack of furnace components by chemically aggressive molten reactants. Freeze-lining technologies involving the deliberate formation of controlled frozen deposits are increasingly being applied to extend the range of liquid bath compositions and process temperatures that can be used; this has resulted in significant increases in process performance and productivity. It has been widely assumed that the interface between the stationary frozen layer and the agitated molten bath at steady state consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature, Tliquidus. It has been shown in the current laboratory-based studies through the use of a cold finger technique that, at steady state and in selected ranges of process conditions and bath compositions, the phase assemblage present at the deposit/liquid interface is not that of the primary phase alone. The microstructural observations clearly demonstrate that the temperature of the deposit/liquid bath interface, Tf, can be lower than the liquidus temperature of the bulk liquid, Tliquidus. These observations point to a significant change in the mechanism and behavior of the systems. To explain this phenomenon, it is proposed that the steady-state thickness of freeze linings is not the result of equilibrium freezing but rather represents a state of dynamic equilibrium that is critically dependent on the relative rates of crystallization, mass, and heat transfer processes, occurring close to and at the deposit interface. The mechanisms taking place in the boundary liquid layer involve both partial crystallization/remelting and continuous removal of solids. This finding has important implications for the design of the high-temperature industrial reactors and selection of ranges of melt chemistries and conditions that can be used. This finding means that temperatures below the liquidus can be selected for some processes, resulting potentially in significant savings of energy and increases in throughput of pyrometallurgical reactors. The findings are generic and are not limited to the specific chemical systems reported in the article.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2013

Investigation of Freeze Lining in Copper-Containing Slag Systems: Part III. High-Temperature Experimental Investigation of the Effect of Bath Agitation

Ata Fallah-Mehrjardi; P. C. Hayes; Evgueni Jak

Freeze-lining technologies have been employed to protect the cooling walls of reactors from chemically aggressive molten reactants. To date, the designs of freeze linings for pyrometallurgical reactors have been based on the basic assumption that the interface between the deposit and the bath remains at the liquidus temperature of the bulk liquid. There is, however, increasing evidence that interface temperature between stagnant deposit and bath is less than the liquidus of the bulk liquid. A previous study also demonstrated that the effects of bath chemistry need to be taken into account in freeze-lining designs. To investigate the fundamental processes involved in the formation and stability of the deposit, experimental laboratory studies have been undertaken in the Cu-Fe-Si-Al-O slag system in equilibrium with metallic copper using an air-cooled probe technique. In the current study, the effects of bath agitation on the microstructure, morphologies of the phases, and formation of various layers across the freeze-lining deposit were studied at steady-state conditions. It appears that the changes in the fluid flow pattern through changes in shear intensities result in corresponding changes in the deposit microstructure, formation of the sealing primary phase layer, thus influencing the interface temperature between freeze-lining deposit and the liquid bath.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag

Ata Fallah-Mehrjardi; Jani Jansson; Pekka Taskinen; P. C. Hayes; Evgueni Jak

Pyrometallurgical coppermaking processes are operated under intensive reaction conditions; high process temperatures and vigorous bath agitation is used to increase the kinetics of reactions and to achieve high smelter throughput. Slag freeze-lining reactor wall protection is a widely used technology in coppermaking processes, such as flash smelting and converting reactors. Freeze-linings mitigate and resist the effects of thermal and chemical attack by aggressive slags. In this laboratory-based study, a water-cooled probe “cold finger” technique has been used to investigate freeze-lining formation with calcium ferrite slags in equilibrium with metallic copper; the slag composition reflects that used in the industrial copper flash converting furnace of Rio Tinto—Kennecott Utah Copper. The effects of probe immersion times on the thickness and microstructures in the freeze-lining deposits have been investigated. A range of complex oxide solutions and copper-containing phases have been found in the deposits. The phase assemblages formed from the industrial calcium ferrite slag in the steady-state deposit are very complex and information on the phase equilibria of the multi-component systems with addition of minor elements may not be available. Subsolidus and subliquidus phase equilibria in the Cu-Ca-Fe-O system at metallic copper saturation along with interpolated temperature across the deposit, microstructural changes and compositional trends in the phases in the deposit have been used to understand the formation and characteristics of the phases in the steady-state freeze-lining. Also, it has been shown that under steady-state conditions a dense sealing layer consisting primarily of the spinel primary phase is formed at the deposit/liquid interface; however, the interface temperature is below the liquidus temperature. The findings of the study have potentially important implications for the operation of the converting furnace and the design of freeze linings in metallurgical systems.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2017

Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Atmospheres: Development of Technique

Ata Fallah-Mehrjardi; Taufiq Hidayat; P. C. Hayes; Evgueni Jak

The majority of primary pyrometallurgical copper making processes involve the formation of two immiscible liquid phases, i.e., matte product and the slag phase. There are significant gaps and discrepancies in the phase equilibria data of the slag and the matte systems due to issues and difficulties in performing the experiments and phase analysis. The present study aims to develop an improved experimental methodology for accurate characterisation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system under controlled atmospheres. The experiments involve high-temperature equilibration of synthetic mixtures on silica substrates in CO/CO2/SO2/Ar atmospheres, rapid quenching of samples into water, and direct composition measurement of the equilibrium phases using Electron Probe X-ray Microanalysis (EPMA). A four-point-test procedure was applied to ensure the achievement of equilibrium, which included the following: (i) investigation of equilibration as a function of time, (ii) assessment of phase homogeneity, (iii) confirmation of equilibrium by approaching from different starting conditions, and (iv) systematic analysis of the reactions specific to the system. An iterative improved experimental methodology was developed using this four-point-test approach to characterize the complex multi-component, multi-phase equilibria with high accuracy and precision. The present study is a part of a broader overall research program on the characterisation of the multi-component (Cu-Fe-O-S-Si-Al-Ca-Mg), multi-phase (gas/slag/matte/metal/solids) systems with minor elements (Pb, Zn, As, Bi, Sn, Sb, Ag, and Au).


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Investigation of Freeze-Linings in Aluminum Production Cells

Ata Fallah-Mehrjardi; P. C. Hayes; Evgueni Jak

The molten cryolite bath creates chemically a very aggressive environment in the Hall–Héroult cell, and thus, the formation of a protective solid layer (freeze-lining) on the cell wall is essential for the operation of the present cell designs. To provide further information on the formation of the freeze-lining deposit in this system, laboratory-based studies were undertaken using an air-cooled probe technique The effects of process conditions, i.e., time, bath agitation, and superheat on the microstructures, morphologies of the phases, and the phase assemblages adjacent to the deposit/bath interface were investigated. A detailed microstructural analysis of the steady-state deposits shows that a dense sealing primary-phase layer of cryolite solid solution was formed at the interface of the bath deposit for the process conditions examined. The formation of sealing primary-phase layer at the bath/deposit interface explicitly indicates that the deposit/liquid bath interface temperature is equal to that of the liquidus of the bulk bath. The experimentally investigated liquidus temperature and subliquidus equilibria differ significantly from those previously reported.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Investigation of freeze-linings in a nonferrous industrial slag

Ata Fallah-Mehrjardi; P. C. Hayes; Stephanie Vervynckt; Evgueni Jak

Slag freeze-lining reactor wall protection is a widely used technology in high temperature reaction systems. An air-cooled probe technique was used to investigate the formation of the freeze-linings in an industrial blast furnace slag. The compositions of the phases and the microstructures within the deposits have been characterized. It has been demonstrated that an industrial air-cooled probe can be used to take bath samples from actual smelter operations. In addition, a laboratory-scale experiment was undertaken to investigate the formation, stability, and bath/deposit interface temperature at steady-state conditions. Importantly, the current study has shown that stable steady-state freeze-linings can be obtained in metallurgical reactors operating below the slag liquidus temperature. In spite of the fact that solids are present in the bulk slag, the deposit thickness remains unaltered due to the dynamic conditions present at the deposit/bath interface. The results are consistent with findings obtained on a number of other different slag systems and the proposed dynamic mechanism of deposit stabilization. The findings demonstrate the basis for, and potential benefits that may follow from, operating the high temperature reactors at temperatures below the liquidus temperature, i.e., with solids present, without a catastrophic build-up of solids. This change in design concept could result in significant decreases in operating temperature, energy, and operating cost savings.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Further Experimental Investigation of Freeze-Lining/Bath Interface at Steady-State Conditions

Ata Fallah-Mehrjardi; P. C. Hayes; Evgueni Jak

In design of the freeze-lining deposits in high-temperature reaction systems, it has been widely assumed that the interface temperature between the deposit and bath at steady-state conditions, that is, when the deposit interface velocity is zero, is the liquidus of the bulk bath material. Current work provides conclusive evidence that the interface temperature can be lower than that of the bulk liquidus. The observations are consistent with a mechanism involving the nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. The temperature and position of the stable deposit/liquid interface are determined by the balance between the extent of crystallization on the detached crystals and mass transfer across the subliquidus layer from the bulk bath. A conceptual framework is developed to analyze the factors influencing the steady-state deposit/interface temperature and deposit thickness in chemical systems operating in a positive temperature gradient. The framework can be used to explain the experimental observations in a diverse range of chemical systems and conditions, including high-temperature melts and aqueous solutions, and to explain why the interface temperature under these conditions can be between Tliquidus and Tsolidus.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2017

Investigation of the influence of heat balance shifts on the freeze microstructure and composition in aluminum smelting bath system: Cryolite-CaF2-AlF3-Al2O3

Jingjing Liu; Ata Fallah-Mehrjardi; Denis Shishin; Evgueni Jak; Mark Dorreen; Mark P. Taylor

In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2013

Investigation of Freeze-Linings in Copper-Containing Slag Systems: Part I. Preliminary Experiments

Ata Fallah-Mehrjardi; P. C. Hayes; Evgueni Jak


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2017

Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Experimental Results at 1473 K (1200 °C) and P (SO 2 ) = 0.25 atm

Ata Fallah-Mehrjardi; Taufiq Hidayat; P. C. Hayes; Evgueni Jak

Collaboration


Dive into the Ata Fallah-Mehrjardi's collaboration.

Top Co-Authors

Avatar

Evgueni Jak

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

P. C. Hayes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Taufiq Hidayat

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Denis Shishin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge