Atanas Katerski
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atanas Katerski.
Beilstein Journal of Nanotechnology | 2016
Erki Kärber; Atanas Katerski; Ilona Oja Acik; A. Mere; Valdek Mikli; Malle Krunks
Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas.
Beilstein Journal of Nanotechnology | 2014
Erki Kärber; Atanas Katerski; Ilona Oja Acik; Valdek Mikli; A. Mere; I. Sildos; Malle Krunks
Summary Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current–voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5–10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm2) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.
IOP Conference Series: Materials Science and Engineering | 2013
T. Dedova; O. Volobujeva; Malle Krunks; Valdek Mikli; Inga Gromyko; Atanas Katerski; A. Mere
ZnO layers comprizing rods were deposited by chemical spray pyrolysis (CSP) method at 520 °C on different FTO (SnO2:F)/glass substrates using zinc chloride aqueous solutions. Substrates were purchased from different manufactures and differ by morphology, grain size and roughness of FTO electrode. FTO/glass substrates and ZnO layers grown on them were characterised with the help of XRD, AFM, high resolution SEM, EDX methods. The relationship between nanorod formation and substrate properties was studied. It was found that substrate roughness and grain size influence the ZnO rods formation. Deposition of rods (d=300 nm, L=1.4 μm) was successful on the FTO layers with grain sizes around 30–50 nm and roughness below 10 nm, whereas large-grained FTO (grain size > 130 nm) resulted in thick, low-aspect ratio crystals with diameter around 400 nm and length of about 400 nm.
Nanoscale Research Letters | 2014
Atanas Katerski; Erki Kärber; Ilona Oja Acik; L. Dolgov; A. Mere; I. Sildos; Valdek Mikli; Malle Krunks
The chemical spray pyrolysis method was used to deposit CuInS2 (CIS) thin films and Au nanoparticles (NPs) in two configurations: glass/Au-NP layer covered with CuInS2 film (Au-NP/CIS) and glass/CuInS2 films covered with Au-NP layer (CIS/Au-NP). According to X-ray diffraction (XRD), the spray of 2 mM HAuCl4 aqueous solution with a volume of 2.5 to 15 ml onto a glass substrate at 340°C results in metallic Au nanoparticles with a similar mean crystallite size in the range of 30 - 38 nm. The mean crystallite sizes remain in the range of 15 - 20 nm when grown onto a CIS film. The prepared films show plasmonic light absorption with increasing intensity in the spectral range of 500- 800 nm when increasing the volume of HAuCl4 solution sprayed. When compared to bare CIS on glass, the absorptance was increased ca. 4.5 times in the case of glass/Au-NP/CIS and ca. 3 times in the case of glass/CIS/Au-NP configuration. The glass/Au-NP/CIS configuration had an advantage since Au-NP could be embedded without chemically damaging the CIS.
IOP Conference Series: Materials Science and Engineering | 2015
I. Oja Acik; N.G. Oyekoya; A. Mere; Atanas Katerski; Valdek Mikli; Malle Krunks
Au-nanoparticles were deposited in-situ by chemical spray pyrolysis method onto glass and indium tin oxide (ITO) covered glass substrates in the temperature range of 260 to 400 °C. SEM studies showed that the number of Au-NPs increased and the particle size decreased with increasing the deposition temperature. The surface plasmon resonance effect of Au-NPs on glass substrate shifts from 550 to 520 nm with decreasing the mean crystallite size of Au-NPs from 49 to 24 nm. The surface plasmon resonance effect of Au-NPs on ITO substrate shift from 570 to 540 nm with decreasing the mean crystallite size of Au-NPs from 53 to 16 nm.
Solar Energy Materials and Solar Cells | 2008
Malle Krunks; Atanas Katerski; T. Dedova; I. Oja Acik; A. Mere
Thin Solid Films | 2005
Ilona Oja; Marian Nanu; Atanas Katerski; Malle Krunks; A. Mere; J. Raudoja; Albert Goossens
Solar Energy Materials and Solar Cells | 2010
Malle Krunks; Erki Kärber; Atanas Katerski; K. Otto; I. Oja Acik; T. Dedova; A. Mere
Thin Solid Films | 2011
K. Otto; Atanas Katerski; A. Mere; O. Volobujeva; Malle Krunks
Thin Solid Films | 2008
Atanas Katerski; A. Mere; Vida Kazlauskiene; J. Miškinis; Agu Saar; Leonard Matisen; A. Kikas; Malle Krunks