Atanu Chakravarty
Silchar Medical College and Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atanu Chakravarty.
PLOS ONE | 2015
Deepjyoti Paul; Debadatta Dhar Chanda; Anand Prakash Maurya; Shweta Mishra; Atanu Chakravarty; Gauri Dutt Sharma; Amitabha Bhattacharjee
Global spread of KPC poses to be a serious threat complicating treatment options in hospital settings. The present study investigates the genetic environment of bla KPC-2 among clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of India. The study isolates were collected from different wards and clinics of Silchar Medical College and Hospital, India, from 2012–2013. The presence of bla KPC was confirmed by genotypic characterization followed by sequencing. Cloning of the bla KPC-2 gene was performed and the genetic environment of this gene was characterized as well. Transferability of the resistance gene was determined by transformation assay and Southern hybridization. Additionally, restriction mapping was also carried out. Two isolates of P. aeruginosa were found to harbor bla KPC-2, were resistant towards aminoglycosides, quinolone and β-lactam-β-lactamase inhibitor combination. In both the isolates, the resistance determinant was associated with class 1 integron and horizontally transferable. Both the isolates were co-harboring bla NDM-1. The first detection of this integron mediated bla KPC-2 coexisting with bla NDM-1 in P. aeruginosa from India is worrisome, and further investigation is required to track the gene cassette mediated bla KPC-2 in terms of infection control and to prevent the spread of this gene in hospitals as well as in the community.
Antimicrobial Agents and Chemotherapy | 2014
Anand Prakash Maurya; Anupam Das Talukdar; Debadatta Dhar Chanda; Atanu Chakravarty; Amitabha Bhattacharjee
ABSTRACT A total 14 clinical isolates of Pseudomonas aeruginosa that produced VEB-1 and were susceptible only to polymyxin B were recovered from hospitalized patients. VEB-1 was located within variable regions of the class 1 integron, flanked by resistant genes, and was horizontally transferable as well as carried within the IncP-type plasmid. We conclude that the IncP-type plasmid is responsible for the horizontal transmission of VEB-1-mediated expanded-spectrum cephalosporin resistance in this medical center.
International Journal of Antimicrobial Agents | 2017
Deepjyoti Paul; Birson Ingti; Dibyojyoti Bhattacharjee; Anand Prakash Maurya; Debadatta Dhar; Atanu Chakravarty; Amitabha Bhattacharjee
The blaOXA-23 group was considered as the first group of OXA-type β-lactamases conferring carbapenem resistance and has been reported worldwide in Acinetobacter baumannii, however their presence in Escherichia coli is very rare and unique. This study describes an unusual occurrence of blaOXA-23 in 14 clinical isolates of E. coli obtained from intensive care unit patients admitted to a tertiary referral hospital in India. The blaOXA-23 gene was found located within a self-conjugative plasmid of IncFrepB and IncK incompatibility types and simultaneously carrying blaCTX-M-15, blaVEB-1, blaPER-1 and/or blaNDM-1. The copy number of blaOXA-23 within the IncK-type plasmid was inversely proportional to increasing concentrations of imipenem, whereas in the case of the IncFrepB-type the result was variable; and increased copy number of the IncK-type plasmid was observed with increasing concentrations of meropenem. Plasmids encoding blaOXA-23 could be successfully eliminated after single treatment and were found to be not highly stable, as complete loss of plasmids was observed within 5-10 days. This study emphasises that carbapenem stress invariably altered the copy number of two different Inc type plasmids encoding the blaOXA-23 resistance gene and also highlights a potential threat of clonal expansion of this class D carbapenemase through a heterologous host in this country, which is in second incidence globally.
Journal of Infection and Public Health | 2018
Nargis Alom Choudhury; Deepjyoti Paul; Atanu Chakravarty; Amitabha Bhattacharjee; Debadatta Dhar Chanda
This study was designed to investigate blaNDM-4 encoded within IncX3 type plasmid and their copy number alteration under carbapenem pressure within clinical isolates of Escherichia coli. NDM-4 producing E. coli isolates were collected from an Indian hospital and transferability as well as plasmid incompatibility typing was determined. Genetic environment and antibiogram profiling was carried out. Quantitative Real Time PCR was done to determine the change in plasmid copy number under concentration gradient carbapenem stress. Multilocus sequence typing and pulsed field gel electrophoresis was performed for typing of isolates. Four multidrug resistant isolates were found to harbour transconjugable blaNDM-4 carrying within IncX3 type plasmid. The blaNDM-4 was flanked by insertion sequences ISAba125 and IS5 in the upstream region whereas bleMBL was present in the downstream area. Copy number results indicated that the blaNDM-4 gene was maintained high in plasmid under exposure of ertapenem. All the strains belonged to ST448 and PFGE analysis revealed three different pulsotypes. This is the first report of blaNDM-4 encoded IncX3 type plasmid in E. coli of ST448 and needs a systematic screening policy to rapid detection of NDM-4 poducing strains to prevent dissemination of this resistant determinant in future.
Journal of Infection and Chemotherapy | 2017
Deepjyoti Paul; Amitabha Bhattacharjee; Birson Ingti; Nargis Alom Choudhury; Anand Prakash Maurya; Debadatta Dhar; Atanu Chakravarty
BACKGROUND New-Delhi metallo-β-lactamase-7 with higher hydrolytic activity than its ancestor NDM-1 is emerging across the globe including India. In this study, we have investigated the genetic context of blaNDM-7 and alteration in plasmid copy number under concentration gradient carbapenem stress. MATERIALS AND METHODS Six blaNDM-7 producing Escherichia coli isolates were obtained from Silchar Medical College and Hospital and the co-existence of other β-lactamases and transferability of this resistant determinant was determined by transformation and conjugation assay followed by typing of the plasmid by PBRT method. Genetic context and plasmid stability of blaNDM-7 was also determined. The change in copy number of transconjugable plasmid carrying blaNDM-7 under exposure of different carbapenem antibiotics was determined by quantitative Real Time PCR. RESULTS All the six isolates carrying blaNDM-7 were conjugatively transferable through an IncX3-type plasmid and were also found to co-harbor blaCTX-M-15. Genetic analysis of blaNDM-7 showed an association of ISAba125, IS5 and a truncated portion of ISAba125 in the upstream region and bleMBL gene in the downstream region of blaNDM-7. Complete loss of the plasmids carrying blaNDM-7 was observed between 85th to 90th serial passages when antibiotic pressure was withdrawn. After analyzing the relative copy number it was observed that the copy number of the blaNDM-7 encoding plasmid was highly affected by the concentration of ertapenem. CONCLUSION The present study has first demonstrated presence of IncX3-type plasmid encoding blaNDM-7 within nosocomial isolates of E. coli. Measures must be taken to prevent or atleast slowdown the emergence of this resistance determinant in this country.
Journal of global antimicrobial resistance | 2016
Debarati Choudhury; Deepjyoti Paul; Anindya S. Ghosh; Anupam Das Talukdar; Manabendra Dutta Choudhury; Anand Prakash Maurya; Debadatta Dhar; Atanu Chakravarty; Amitabha Bhattacharjee
The therapeutic option of a carbapenem antibiotic is compromised in Pseudomonas aeruginosa owing both to acquired and intrinsic resistance mechanisms. In recent years, New Delhi metallo-β-lactamase has been the focus as a predominant carbapenem resistance determinant. However, it is unclear which of the mechanisms might be adopted by a P. aeruginosa strain possessing both blaNDM-1 and an overexpressed MexAB-OprM system during carbapenem therapy. This study investigated the interplay of both mechanisms in clinical isolates of P. aeruginosa when exposed to meropenem. Five strains were used: (i) strain overexpressing MexAB-OprM but with no blaNDM-1; (ii) strain harbouring blaNDM-1 but expressing MexAB-OprM at basal level; (iii) strain possessing blaNDM-1 and overexpressing MexAB-OprM; (iv) P. aeruginosa PAO1; and (v) P. aeruginosa K2733-PAO1 (ΔMexAB-OprMΔMexCD-OprJΔMexEF-OprNΔMexXY-OprM) into which blaNDM-1 was cloned. Strains were incubated in Luria-Bertani broth with and without 1μg/mL meropenem. Total RNA was isolated at 45-min intervals and was immediately reverse transcribed to cDNA. This was repeated for 6h. Quantitative real-time PCR was performed for both resistance mechanisms. Meropenem exposure did not significantly elevate transcription of either the blaNDM-1 or mexA gene. However, an interesting finding was that upon single-dose exposure to carbapenem, the efflux pump system played a major role in bacterial survival compared with NDM-1. This study gives an insight into the bacterial response to carbapenem antibiotic when two different resistance mechanisms coexist. This type of study would be helpful in designing future antimicrobials.
Indian Journal of Medical Research | 2016
Deepjyoti Paul; Anand Prakash Maurya; Debadatta Dhar Chanda; Gauri Dutt Sharma; Atanu Chakravarty; Amitabha Bhattacharjee
Pseudomonas aeruginosa is known to be a predominant opportunistic pathogen and also a frequent cause of nosocomial infection in patients with compromised immune system. Treatment option becomes complicated when this type of organism harbour resistance determinants such as New Delhi metallo-β-lactamase-1 (NDM-1). The genetic vehicles carrying this gene are often responsible for their horizontal spread, dissemination and maintenance within a broad host range1. Knowledge about transmission dynamics of blaNDM-1 is a key to succeed in the effort of infection control and slowing down the spread of multidrug resistance. This study was undertaken to characterize blaNDM-1 in clinical isolates of P. aeruginosa, their transmission dynamics and plasmid Inc types responsible for their horizontal transfer in a tertiary referral hospital of northeast India.
Infection, Genetics and Evolution | 2017
Birson Ingti; Monjur Ahmed Laskar; Sudip Choudhury; Anand Prakash Maurya; Deepjyoti Paul; Anupam Das Talukdar; Manabendra Dutta Choudhury; Debadatta Dhar; Atanu Chakravarty; Amitabha Bhattacharjee
Two Klebsiella strains isolated from urine samples were positive for blaAmpC by PCR and showed sequence similarity with CMH-1 (98.6%) after sequencing. It also shares 82% similarity with ACT-1, 85% with MIR-1 and 81% with the chromosomal AmpC gene of Enterobacter cloacae. This gene was associated with the plasmid of IncK type. It has an open reading frame of 381 amino acid with four amino acid substitutions at position D144A, C189R, Q192E, and A195T as compared to CMH-1. When expressed in E.coli DH5α and E.coli strain B, this β-lactamase conferred resistance to cefotaxime, ceftriaxone and ceftazidime. In addition, both in vitro and in silico analysis revealed that this cephalosporinase was inhibited by cefepime and carbapenem group of drugs. Therefore, this new plasmid-encoded AmpC type β-lactamase gene was designated as CMH-2.
Antimicrobial Agents and Chemotherapy | 2017
Jayalaxmi Wangkheimayum; Deepjyoti Paul; Debadatta Dhar; Rajlakshmi Nepram; Shiela Chetri; Deepshikha Bhowmik; Atanu Chakravarty; Amitabha Bhattacharjee
ABSTRACT The methylation of a ribosomal target leads to a high level of resistance to all clinically relevant aminoglycoside antibiotics, so early detection of these resistance determinants will help to reduce the incidence of treatment failures as well as lessen the dissemination rate. Here, we characterized different 16S rRNA methyltransferases responsible for aminoglycoside resistance and their epidemiological background in clinical isolates of Enterobacteriaceae in a tertiary referral hospital in India. All aminoglycoside-resistant isolates were screened for different 16S rRNA methyltransferases by PCR assay, and incompatibility typing of the conjugable plasmid harboring resistance genes was performed by PCR-based replicon typing. An assay for the stability and elimination of these resistance plasmids was performed. The coexistence of extended-spectrum β-lactamases and metallo-β-lactamases was also detected, and the heterogeneity of these isolates was determined by enterobacterial repetitive intergenic consensus PCR. The PCR assay revealed the presence of armA, rmtA, rmtB, rmtC, and rmtD in single and multiple combinations, and these were carried by a diverse group of Inc plasmids. Plasmids harboring these resistance determinants were highly stable and maintained until the 55th serial passage, but SDS treatment could easily eliminate the plasmids harboring the resistance determinants. The coexistence of blaTEM, blaPER, blaGES, and blaSHV, as well as blaVIM and blaNDM, within these isolates was also detected. Strains with different clonal patterns of aminoglycoside resistance were found to spread in this hospital setting. We observed that the 16S rRNA methyltransferase genes were encoded within different Inc plasmid types, suggesting diverse origins and sources of acquisition. Therefore, the present study is of epidemiological importance and can have a role in infection control policy in hospital settings.
Journal of Medical Microbiology and Diagnosis | 2016
Nargis Alom Choudhury; Sun; a Deb; An; Prakash Maurya; Debadatta Dhar; Atanu Chakravarty; Amitabha Bhattacharjee
Introduction: Klebsiella pneumonia is an emerging pathogen associated with multidrug resistance both in hospital and community settings. Aminoglycosides, considered to be second line drug for the treatment of such pathogens, become inactive due to acquisition of various resistance determinants by this organism. Objective: The objective of the study was to screen the aminoglycoside resistant Klebsiella pneumonia from a tertiary referral hospital of northeast India and their transmission dynamics. Method: A total of 177 consecutive, non-duplicate, clinical isolates of Klebsiella pneumonia were collected from patients from a period of September 2013 to February 2014. Screening for aminoglycoside resistance was performed. Transferability of aminoglycoside resistance was done by transformation assay. Genetic stability was checked by consecutive serial passage of 70 days. Incompatibility types were determined by PCR based replicon typing. Result: Among 177 clinical isolates, 94 were screened to be resistant towards aminoglycoside group of antibiotics. The aminoglycoside resistance determinant was found to be transferable when transformants were selected in gentamicin (100 μg/ml) screen agar. Coresistance was also shown by these isolates. Gentamicin resistance was lost after 47 consecutive serial passages. F inc type (n = 17) was more predominant, followed by K/B (n = 11), Y (n = 13), I (n = 9) and P (n = 8) when plasmids were typed by PCR based replicon typing. Conclusion: This study highlighted the transmission dynamics of aminoglycoside resistance determined which pose threat to the treatment option in hospital settings.