Atanu Duttaroy
Howard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atanu Duttaroy.
Mechanisms of Ageing and Development | 2007
Anirban Paul; Amy Belton; Sanjay Nag; Ian Martin; Mike Grotewiel; Atanu Duttaroy
Manganese superoxide dismutase (MnSOD or SOD2) is a key mitochondrial enzymatic antioxidant. Arguably the most striking phenotype associated with complete loss of SOD2 in flies and mice is shortened life span. To further explore the role of SOD2 in protecting animals from aging and age-associated pathology, we generated a unique collection of Drosophila mutants that progressively reduce SOD2 expression and function. Mitochondrial aconitase activity was substantially reduced in the Sod2 mutants, suggesting that SOD2 normally ensures the functional capacity of mitochondria. Flies with severe reductions in SOD2 expression exhibited accelerated senescence of olfactory behavior as well as precocious neurodegeneration and DNA strand breakage in neurons. Furthermore, life span was progressively shortened and age-dependent mortality was increased in conjunction with reduced SOD2 expression, while initial mortality and developmental viability were unaffected. Interestingly, life span and age-dependent mortality varied exponentially with SOD2 activity, indicating that there might normally be a surplus of this enzyme for protecting animals from premature death. Our data support a model in which disruption of the protective effects of SOD2 on mitochondria manifests as profound changes in behavioral and demographic aging as well as exacerbated age-related pathology in the nervous system.
Developmental Cell | 2011
Alysia D. Vrailas-Mortimer; Tania del Rivero; Subhas Mukherjee; Sanjay Nag; Alexandros Gaitanidis; Dimitris Kadas; Christos Consoulas; Atanu Duttaroy; Subhabrata Sanyal
Molecular mechanisms that concordantly regulate stress, life span, and aging remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP kinase (p38K)/Mef2/MnSOD pathway is a coregulator of stress and life span. Hence, overexpression of p38K extends life span in a MnSOD-dependent manner, whereas inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences life span and stress, distinct from the insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
PLOS ONE | 2013
Najealicka Armstrong; Malaisamy Ramamoorthy; Delina Lyon; Kimberly J Jones; Atanu Duttaroy
Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag+) led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.
Free Radical Biology and Medicine | 2009
Shawna Wicks; Nathan Bain; Atanu Duttaroy; Arthur J. Hilliker; John P. Phillips
Oxidative stress is widely associated with disease and aging but the underlying mechanisms are incompletely understood. Here we show that the premature mortality of Drosophila deficient in superoxide scavengers, superoxide dismutase (SOD) 1 or SOD2, is rescued by chronic hypoxia. Strikingly, switching moribund SOD2-deficient adults from normoxia into hypoxia abruptly arrests their impending premature mortality and endows the survivors with a near-normal life span. This finding challenges the notion that irreversible oxidative damage initiated by unscavenged superoxide in the mitochondrial matrix underpins the premature mortality of SOD2-deficient adults. In contrast, switching moribund SOD1-deficient flies from normoxia into hypoxia fails to alter their mortality trajectory, suggesting that the deleterious effects of unscavenged superoxide in the cytoplasm/intermembrane space compartment are cumulative and largely irreversible. We conclude that cellular responses to superoxide-initiated oxidative stress are mediated through different compartment-specific pathways. Elucidating these pathways should provide novel insights into how aerobic cells manage oxidative stress in health, aging, and disease.
Genetics | 2009
Tanja A Godenschwege; Renée Forde; Claudette P Davis; Anirban Paul; Kristopher Beckwith; Atanu Duttaroy
Cellular superoxide radicals (O2−) are mostly generated during mitochondrial oxygen metabolism. O2− serves as the raw material for many reactive oxygen species (ROS) members like H2O2 and OH.− radicals following its catalysis by superoxide dismutase (SOD) enzymes and also by autocatalysis (autodismutation) reactions. Mitochondrial ROS generation could have serious implications on degenerative diseases. In model systems overproduction of mitochondrial O2− resulting from the loss of SOD2 function leads to movement disorders and drastic reduction in life span in vertebrates and invertebrates alike. With the help of a mitochondrial SOD2 loss-of-function mutant, Sod2n283, we measured the sensitivity of muscles and neurons to ROS attack. Neural outputs from flight motor neurons and sensory neurons were unchanged in Sod2n283 and the entire neural circuitry between the giant fiber (GF) and the dorsal longitudinal muscles (DLM) showed no overt defect due to elevated ROS. Such insensitivity of neurons to mitochondrial superoxides was further established through neuronal expression of SOD2, which failed to improve survival or locomotive ability of Sod2n283. On the other hand, ultrastructural analysis of Sod2n283 muscles revealed fewer mitochondria and reduced muscle ATP production. By targeting the SOD2 expression to the muscle we demonstrate that the early mortality phenotype of Sod2n283 can be ameliorated along with signs of improved mobility. In summary, muscles appear to be more sensitive to superoxide attack relative to the neurons and such overt phenotypes observed in SOD2-deficient animals can be directly attributed to the muscle.
Biogerontology | 2009
Nicole Piazza; Michael Hayes; Ian Martin; Atanu Duttaroy; Mike Grotewiel; Robert J. Wessells
Oxidative damage has been proposed as an important factor in the progression of pathological and non-pathological age-related functional declines. Here, we examine functional deterioration in short-lived flies mutant for the mitochondrial antioxidant Manganese Superoxide Dismutase (Sod2). We find that the decline of several functional measures of aging occurs, in an accelerated fashion, in Sod2 mutants. Olfactory behavior, locomotor ability and cardiac performance were all seen to decline rapidly in Sod2 mutants. On average, functional declines in Sod2 mutants occur in a pattern similar to that seen in late-life Drosophila with a normal complement of Sod2. In longitudinal experiments, however, we find that functional failures occur in every possible sequence in Sod2 mutants. Significantly, failure of these functional measures is not irreversible, as spontaneous functional recovery was sometimes observed. These findings support a model where ROS-related damage strikes at multiple organ systems in parallel, rather than a “chain of dominos” model, in which primary organ failure contributes to the deterioration of further organ systems.
Fly | 2011
Subhas Mukherjee; Renée Forde; Amy Belton; Atanu Duttaroy
Definitive evidence on the impact of MnSOD/SOD2-deficiency and the consequent effects of high flux of mitochondrial reactive oxygen species (ROS) on pre-natal/pre-adult development has yet to be reported for either Drosophila or mice. Here we report that oocytes lacking maternal SOD2 protein develop into adults just like normal SOD2-containing oocytes suggesting that maternal SOD2-mediated protection against mitochondrial ROS is not essential for oocyte viability. However, the capacity of SOD2-null larvae to undergo successful metamorphosis into adults is negatively influenced in the absence of SOD2. We therefore determined the impact of a high superoxide environment on cell size, progression through the cell cycle, cell differentiation, and cell death and found no difference between SOD2-null and SOD2+ larva and pupa. Thus loss of SOD2 activity clearly has no effect on pre-adult imaginal tissues. Instead, we found that the high mitochondrial superoxide environment arising from the absence of SOD2 leads to the induction of autophagy. Such autophagic response may underpin the resistance of pre-adult tissues to unscavenged ROS. Finally, while our data establish that SOD2 activity is less essential for normal development, the mortality of Sod2-/- neonates of both Drosophila and mice suggests that SOD2 activity is indeed essential for the viability of adults. We therefore asked if the early mortality of SOD2-null young adults could be rescued by activation of SOD2 expression. The results support the conclusion that the early mortality of SOD2-null adults is largely attributable to the absence of SOD2 activity in the adult per se. This finding somewhat contradicts the widely held notion that failure to scavenge the high volume of superoxide emanating from the oxidative demands of development would be highly detrimental to developing tissues.
Genetics | 2013
Subhas Mukherjee; Atanu Duttaroy
Insulin and target of rapamycin (TOR) signaling pathways converge to maintain growth so a proportionate body form is attained. Insufficiency in either insulin or TOR results in developmental growth defects due to low ATP level. Spargel is the Drosophila homolog of PGC-1, which is an omnipotent transcriptional coactivator in mammals. Like its mammalian counterpart, Spargel/dPGC-1 is recognized for its role in energy metabolism through mitochondrial biogenesis. An earlier study demonstrated that Spargel/dPGC-1 is involved in the insulin–TOR signaling, but a comprehensive analysis is needed to understand exactly which step of this pathway Spargel/PGC-1 is essential. Using genetic epistasis analysis, we demonstrated that a Spargel gain of function can overcome the TOR and S6K mediated cell size and cell growth defects in a cell autonomous manner. Moreover, the tissue-restricted phenotypes of TOR and S6k mutants are rescued by Spargel overexpression. We have further elucidated that Spargel gain of function sets back the mitochondrial numbers in growth-limited TOR mutant cell clones, which suggests a possible mechanism for Spargel action on cells and tissue to attain normal size. Finally, excess Spargel can ameliorate the negative effect of FoxO overexpression only to a limited extent, which suggests that Spargel does not share all of the FoxO functions and consequently cannot significantly rescue the FoxO phenotypes. Together, our observation established that Spargel/dPGC-1 is indeed a terminal effector in the insulin–TOR pathway operating below TOR, S6K, Tsc, and FoxO. This led us to conclude that Spargel should be incorporated as a new member of this growth-signaling pathway.
Frontiers in Genetics | 2014
Subhas Mukherjee; Mohammed Abul Basar; Claudette P Davis; Atanu Duttaroy
Peroxisome Proliferator Activated Receptor Gamma Co-activator-1 (PGC-1) is a well-conserved protein among all chordates. Entire Drosophila species subgroup carries a PGC-1 homolog in their genome called spargel/dPGC-1 showing very little divergence. Recent studies have reported that significant functional similarities are shared between vertebrate and invertebrate PGC-1s based on their role in mitochondrial functions and biogenesis, gluconeogenesis, and most likely in transcription and RNA processing. With the help of genetic epistasis analysis, we established that Drosophila Spargel/dPGC-1 affects cell growth process as a terminal effector in the Insulin-TOR signaling pathway. The association between Spargel/dPGC-1 and Insulin signaling could also explain its role in the aging process. Here we provided a further comparison between Spargel/dPGC-1 and PGC-1 focusing on nuclear localization, oxidative stress resistance, and a possible role of Spargel/dPGC-1 in oogenesis reminiscing the role of Spargel in reproductive aging like many Insulin signaling partners. This led us to hypothesize that the discovery of newer biological functions in Drosophila Spargel/dPGC-1 will pave the way to uncover novel functional equivalents in mammals.
Aging Cell | 2003
Anirban Paul; Atanu Duttaroy
The transcription of manganese superoxide dismutase (MnSOD), expression of which is essential for detoxification of superoxide radicals from mitochondria, has been shown to be regulated in vitro by many factors and conditions including oxidative stress, cytokines, lipopolysaccharide, cytoplasmic myc (c‐myc), p53 and tumour necrosis factors. Here we describe genomic regions in Drosophila melanogaster with regulatory effects on transcription of the MnSOD gene at an organism‐wide level. To understand the integrated regulation of MnSOD expression we screened chromosomes of D. melanogaster to locate deficiencies that altered the expression of MnSOD. Suppressors of MnSOD were screened by assessing the relative message abundance of MnSOD in 149 deletions covering approximately 81% of the Drosophila genome. The chromosomal deficiency Df(2R)017 significantly up‐regulated MnSOD mRNA by 1.7‐fold. Deficiency in four other genomic intervals, Df(1)ct‐J4, Df(2L)BSC4, Df(3L)66C‐G28 and Df(3R)Scr, down‐regulated MnSOD expression. Changes in MnSOD expression were positively associated with paraquat sensitivity of the deletion genotypes. Thus, at least one candidate enhancer and four candidate suppressors exist in the Drosophila genome to regulate the transcriptional activity of the MnSOD gene in vivo.