Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ataúlfo Martínez-Torres is active.

Publication


Featured researches published by Ataúlfo Martínez-Torres.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

Ricardo Miledi; Fabrizio Eusebi; Ataúlfo Martínez-Torres; Eleonora Palma; Flavia Trettel

The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl− channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to γ-aminobutyric acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The single-channel properties of human acetylcholine α7 receptors are altered by fusing α7 to the green fluorescent protein

Sergio Fucile; Eleonora Palma; Ataúlfo Martínez-Torres; Ricardo Miledi; Fabrizio Eusebi

Neuronal nicotinic acetylcholine (AcCho) receptors composed of α7-subunits (α7-AcChoRs) are involved in many physiological activities. Nevertheless, very little is known about their single-channel characteristics. By using outside-out patch-clamp recordings from Xenopus oocytes expressing wild-type (wt) α7-AcChoRs, we identified two classes of channel conductance: a low conductance (γL) of 72 pS and a high one (γH) of 87 pS, with mean open-times (τop) of 0.6 ms. The same classes of conductances, but longer τop (3 ms), were seen in experiments with chimeric α7 receptors in which the wtα7 extracellular C terminus was fused to the green fluorescent protein (wtα7-GFP AcChoRs). In contrast, channels with three different conductances were gated by AcCho in oocytes expressing α7 receptors carrying a Leu-to-Thr 248 mutation (mutα7) or oocytes expressing chimeric mutα7-GFP receptors. These conductance levels were significantly smaller, and their mean open-times were larger, than those of wtα7-AcChoRs. Interestingly, in the absence of AcCho, these oocytes showed single-channel openings of the same conductances, but shorter τop, than those activated by AcCho. Accordingly, human homomeric wtα7 receptors open channels of high conductance and brief lifetime, and fusion to GFP lengthens their lifetime. In contrast, mutα7 receptors open channels of lower conductance and longer lifetime than those gated by wtα7-AcChoRs, and these parameters are not greatly altered by fusing the mutα7 to GFP. All this evidence shows that GFP-tagging can alter importantly receptor kinetics, a fact that has to be taken into account whenever tagged proteins are used to study their function.


Gene Expression | 2006

Ontogenetic distribution of 5-HT2C, 5-HT5A, and 5-HT7 receptors in the rat hippocampus.

Guadalupe García-Alcocer; Laura Cristina Berumen Segura; Mariane Garcia Pena; Ataúlfo Martínez-Torres; Ricardo Miledi

It is known that serotonin exerts its different nociceptive and motor functions by interacting with distinct receptors subtypes, which could be either G-protein coupled or ionotropic. Previous reports demonstrated the early activation of serotonin receptor transcripts during rat development, suggesting a potential role of the serotoninergic system during ontogeny. In this study we have compared the cellular distribution of three serotonin receptor subtypes: 5-HT2C, 5-HT5A, and 5-HT7. Immunocytochemical methods were used in slices of rat hippocampus obtained during the postnatal development. 5-HT2c immunoreactivity was strong at all developmental stages in the CA1 region, whereas differences were observed between P0 and P5 in the CA3 region. The 5-HT5A receptor immunosignal in CA1 and CA3 was strong at P0, decreased at P11, and then increased in the adult. The immunoreactivity to 5-HT7 receptors was high in all regions at P0 and then decreased progressively during postnatal development; the signal was stronger for 5-HT2c than for 5-HT5A and 5-HT7 receptors. Changes in the expression level of each receptor may result in differences in functional and pharmacological properties of the cells expressing them as well as in the hippocampal neuronal network. The distribution of the three serotonin receptor subtypes studied varied during the ontogeny, which supports their potential role during development and will help to understand their mechanisms.


Biology of Reproduction | 2002

Ionic Currents Activated via Purinergic Receptors in the Cumulus Cell-Enclosed Mouse Oocyte

Rogelio O. Arellano; Ataúlfo Martínez-Torres; Edith Garay

Abstract Several chemical signals synthesized in the ovary, including neurotransmitters, have been proposed to serve as regulators of folliculogenesis, however, their mechanisms of action have not been completely elucidated. Here, electrophysiological and molecular biology techniques were used to study responses generated via purinergic stimulation in cultured mouse cumulus cell-enclosed oocytes (CEOs). Application of extracellular ATP elicited depolarizing responses in CEOs. Using the voltage clamp technique by impaling oocytes with two microelectrodes, we determined that these responses were mainly due to activation of two distinct ionic currents. The first corresponded to the opening of Ca2+-dependent Cl− channels (ICl(Ca)) and the second to the opening of Ca2+-independent channels that are permeable to Na+ (Ic+). The potency order for different nucleotides (50 μM) was UTP > ATP > 2meS-ATP > ADP, and α,βme-ATP and adenosine were found to be inactive. Suramin (100 μM) blocked the response elicited by ATP or UTP. In addition, voltage dependent K+ currents activated by depolarization of CEOs were characterized. All CEO ionic currents recorded from the oocyte were completely inhibited by octanol (1 mM), a gap junction blocker. Thus, purinergic responses and K+ currents originate mainly in the membrane of cumulus cells. Transcripts of the purinergic receptor P2Y2 subtype were amplified by polymerase chain reaction from the cDNA of granulosa cells or cumulus cells. This study shows that P2Y2 receptors are expressed in CEOs, and that their stimulation opens at least two different types of ion channels. Both the ion channels and the receptors seemed to be located in the cumulus cells, which transmit their corresponding electrical signals to the oocyte via gap junction channels.


Current Neuropharmacology | 2010

An Update on GABAρ Receptors

Gustavo Martínez-Delgado; Argel Estrada-Mondragon; Ricardo Miledi; Ataúlfo Martínez-Torres

The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.


Neuroscience Research | 2005

Cloning and functional expression of the bovine GABAC ρ2 subunit: Molecular evidence of a widespread distribution in the CNS

Ariel López-Chávez; Ricardo Miledi; Ataúlfo Martínez-Torres

GABA(C) receptors were first described as a non-desensitizing, bicuculline- and baclofen-insensitive component in Xenopus oocytes expressing bovine retina mRNA. However, the expression, tissue distribution and functional properties of GABA(C) receptors from other areas of the CNS still remain controversial. In previous experiments, the injection of rat cerebellum mRNA into Xenopus oocytes induced the expression of receptors that generated currents with both GABA(A) and GABA(C) characteristics; the latter component apparently being given by the rho2 subunit, suggesting the expression of GABA(C) receptors in the CNS and the formation of homooligomeric receptors. In this study, using RT-PCR, we found that the rho1 and rho2 subunits are widely expressed in the CNS including areas where they have not been previously described such as the bulb, pons and the caudate nucleus. To determine if the GABA(C) component of the GABA-currents elicited by oocytes expressing cerebellum mRNA was caused by activation of homomeric GABA rho2 receptors, we cloned the corresponding cDNA and expressed it in Xenopus oocytes. It was found that oocytes injected with rho2 cDNA, efficiently formed GABA-gated homooligomeric receptors. The GABA-dose-current response gave an EC50=1.19muM and the currents were resistant to bicuculline and reversibly antagonized by the specific GABA(C) receptor antagonist TPMPA. Altogether, our results indicate a widespread distribution of both rho1 and rho2 subunits in the bovine CNS and show further that the rho2 subunit cDNA isolated from cerebellum, forms fully functional receptors when expressed in Xenopus oocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

Eleonora Palma; Anna Maria Mileo; Ataúlfo Martínez-Torres; Fabrizio Eusebi; Ricardo Miledi

The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.


Neuroscience Letters | 2011

The GABA(A)ρ receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex.

Abraham Rosas-Arellano; Jorge Parodi; Arturo Israel Machuca‐Parra; Adriana Sánchez-Gutiérrez; Nibaldo C. Inestrosa; Ricardo Miledi; Ataúlfo Martínez-Torres

A bicuculline-resistant and TPMPA-sensitive GABAergic component was identified in hippocampal neurons in culture and in acute isolated brain slices. In both preparations, total GABAergic activity showed two inactivation kinetics: fast and slow. RT-PCR, in situ hybridization (ISH) and immunohistochemistry detected expression of GABAρ subunits. Immunogold and electron microscopy indicated that the receptors are mostly extrasynaptic. In addition, by RT-PCR and immunofluorescence we found GABAρ present in amygdala and visual cortex.


Neuroscience Research | 2007

Brain distribution and molecular cloning of the bovine GABA ρ1 receptor

Abraham Rosas-Arellano; Lenin Ochoa-de la Paz; Ricardo Miledi; Ataúlfo Martínez-Torres

GABA(C) receptors were originally found in the mammalian retina and recent evidence shows that they are also expressed in several areas of the brain, including caudate nucleus, brain stem, pons and corpus callosum. In this study, plasma membranes from the caudate nucleus were microinjected into X. laevis oocytes. This led the oocyte plasma membrane to incorporate functional bicuculline-resistant, Cl(-) conducting bovine GABA receptors, similar to those of the retina. Immunolocalization of the GABA rho1 subunit revealed its expression in bovine neurons in the head of the caudate as well as in the olive, cuneiform and reticular nuclei of the brain stem. The same antibodies failed to show expression in the callosum and pons, where the GABA rho1 mRNA was previously detected. The cloned GABA rho1 sequence predicts a protein with 473 amino acids and 74-93% similarity to other GABA rho1 subunits. Oocytes injected with the cDNA express a non-desensitizing, homomeric receptor with a GABA EC(50)=6.0 microM and a Hill coefficient of 1.8. The results confirm the presence of GABA(C) receptor mRNAs in several areas of the mammalian brain and show that some of these areas express functional GABA rho1 receptors that have the classic GABA(C) receptor characteristics.


Neuroscience Research | 2008

Modulation of human GABAρ1 receptors by taurine

L.D. Ochoa-de la Paz; I.A. Martínez-Dávila; Ricardo Miledi; Ataúlfo Martínez-Torres

A study was made of the effects of taurine on GABArho1 receptors expressed in Xenopus oocytes. The EC(50) and reversal potentials for GABA, taurine and glycine currents were 2.3+/-0.4 microM (-25+/-0.9 mV), 5+/-0.8mM (-27+/-0.4 mV) and 7+/-0.5mM (-22+/-0.6 mV), respectively. Co-application of GABA and taurine, revealed a taurine concentration-dependent biphasic-modulation of the receptor: at 0.3-30 microM taurine potentiated the GABA-currents, whereas at 0.3-30 mM the GABA-currents were reduced. In contrast glycine potentiated the GABA-currents at all concentrations tested. TPMPA, a GABA(C) specific receptor antagonist, also blocked effectively and reversibly the taurine and glycine currents. Finally, lanthanum and zinc modulated the currents generated by the three amino acids. Taurine is abundant in the retina and our observations suggest that taurine may play an important role modulating the retinal GABAergic transmission.

Collaboration


Dive into the Ataúlfo Martínez-Torres's collaboration.

Top Co-Authors

Avatar

Ricardo Miledi

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Daniel Reyes-Haro

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lenin Ochoa-de la Paz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Eusebi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Abraham Rosas-Arellano

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Guadalupe García-Alcocer

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Eleonora Palma

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Juan Pablo Reyes

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María Alejandra González-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Angelo Demuro

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge