Athanasios S. Stasinakis
University of the Aegean
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athanasios S. Stasinakis.
Journal of Hazardous Materials | 2013
Vasilios G. Samaras; Athanasios S. Stasinakis; Daniel Mamais; Nikolaos S. Thomaidis; Themistokles D. Lekkas
The concentrations of nine emerging contaminants, including pharmaceutically active compounds (PhACs) (ibuprofen, IBF; naproxen, NPX; diclofenac, DCF; ketoprofen, KFN) and endocrine disrupting chemicals (triclosan, TCS; bisphenol, BPA; nonylphenol, NP; nonylphenol monoethoxylate, NP1EO; nonylphenol diethoxylate, NP2EO), were determined in wastewater and sludge samples of two wastewater treatment plants (WWTPs) in Greece. Average concentrations in raw and treated wastewater ranged from 0.39 (KFN) to 12.52 μg L(-1) (NP) and from <LOD (IBF) to 0.80 μg L(-1) (DCF), respectively. A significant part of nonylphenols (NPs) and TCS in influent wastewater was bound to the particulate phase, while PhACs and BPA were mainly detected in the aqueous phase. Removal of target compounds during wastewater treatment ranged between 39% (DCF) and 100% (IBF). Except of DCF and BPA, similar removal efficiencies were observed in both WWTPs and no effect of WWTPs size and operational conditions was noticed. Use of mass balances showed that accumulation on sludge was a significant removal mechanism for NPs and TCS, while biodegradation/biotransformation was the major mechanism for the other compounds. Sampling of raw and digested sludge demonstrated that IBF and NPX are significantly removed (>80%) during anaerobic digestion, whereas removal of EDCs was lower, ranging up to 55% for NP1EO.
Water Research | 2002
Athanasios S. Stasinakis; Daniel Mamais; Nikolaos S. Thomaidis; Themistokles D. Lekkas
The effect of hexavalent chromium, Cr(VI), on the maximum specific growth rate, mu(m) and biomass yield, Y(H), of heterotrophic biomass was studied in batch tests conducted under high (= 10) and low (= 1.5) substrate-to-biomass ratios (S0/X0). The effects of sludge age and biomass acclimatization to Cr(VI) on the bacterial kinetics were also studied. The mu(m) values were determined by measuring oxygen uptake rate (OUR) and volatile suspended solids (VSS) increase. Cr(VI) concentrations equal or greater than 10 mg l(-1) inhibited the growth of unacclimatized activated sludge and caused a significant decrease in mu(m) and Y(H) values. The acclimatization of biomass and the selection of a high operating sludge age reduced the inhibitory effect of Cr(VI). At a sludge age of 20 days, Cr(VI) concentrations of <10 mg l(-1) stimulated bacterial growth as evidenced by an increase in both the mu(m) and Y(H) values. Determining mu(m) values by OUR and VSS methods, revealed that the presence of Cr(VI) in unacclimatized biomass caused an inhibitory effect mostly on substrate oxidation, while in acclimatized biomass, anabolic pathways were inhibited more.
Science of The Total Environment | 2013
Athanasios S. Stasinakis; Nikolaos S. Thomaidis; Olga S. Arvaniti; Alexandros G. Asimakopoulos; Vasilios G. Samaras; Akinranti Ajibola; Daniel Mamais; Themistokles D. Lekkas
The occurrence and fate of 36 emerging contaminants, belonging to five different classes, (benzotriazoles, BTRs; benzothiazoles, BTHs; perfluorinated compounds, PFCs; non-steroidal anti-inflammatory drugs, NSAIDs and endocrine disruptors, EDCs) were investigated in raw, treated wastewater (both particulate and dissolved phases), and in sludge from a sewage treatment plant (STP) in Athens, Greece. The average concentrations of BTRs, BTHs, NSAIDs and EDCs in raw wastewater ranged between 11 ng L(-1) and 7.27 μg L(-1), while PFCs did not exceed 100 ng L(-1). In dewatered sludge, the average concentrations ranged between 0.8 ng g(-1) dw (perfluorohexanoic acid, PFHxA) and 3895 ng g(-1) dw (nonylphenol, NP). The distribution of emerging contaminants between particulate and dissolved phase was different among the compounds. BTRs and BTHs showed lower solid-liquid distribution coefficients (Kd) than all other compounds. For 9 over the 27 compounds detected in influents, the removal efficiency was higher than 70%, while the others either were removed to a lesser extent or detected at higher concentrations in effluents. Based on this, advanced treatment processes should be applied in the future for achieving adequate emerging contaminants removal in STPs. Regarding removal mechanisms, almost 60% of BTRs and 30 to 75% of BTHs were removed in bioreactors, while the contribution of primary and secondary clarifiers was of minor importance. Sorption to primary sludge was a significant mechanism affecting EDCs fate in STP.
Water Research | 2003
Athanasios S. Stasinakis; Nikolaos S. Thomaidis; Daniel Mamais; Evangelia C Papanikolaou; Angeliki Tsakon; Themistokles D. Lekkas
The effect of hexavalent chromium, Cr(VI), addition on various operating parameters of activated sludge process was evaluated. To accomplish this, two parallel lab-scale continuous-flow activated sludge plants were operated. One was used as a control plant, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5 mgl(-1). Cr(VI) concentrations of 0.5 mgl(-1) caused significant inhibition of the nitrification process (up to 74% decrease in ammonia removal efficiency). On the contrary, the effect of Cr(VI) on organic substrate removal was minor for concentrations up to 5 mgl(-1), indicating that heterotrophic microorganisms are less sensitive to Cr(VI) than nitrifiers. Activated sludge floc size and structure characterization showed that Cr(VI) concentrations higher than 1 mgl(-1) reduced the filaments abundance, causing the appearance of pin-point flocs and free-dispersed bacteria. Additionally, the variability of protozoa and rotifers was reduced. As a result of disperse growth, effluent quality deteriorated, since significant amounts of suspended solids escaped with the effluent. Termination of Cr(VI) addition led to a partial recovery of the nitrification process (up to 57% recovery). Similar recovery signs were not observed for activated sludge floc size and structure. Finally, shock loading to the control plant with 5 mgl(-1) Cr(VI) for 2 days resulted in a significant inhibition of the nitrification process and a reduction in filamentous microorganisms abundance.
Science of The Total Environment | 2015
Olga S. Arvaniti; Athanasios S. Stasinakis
Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4-C14, C16, C18 carboxylates; C4-C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and anaerobic bioreactors and result to PFCs formation and on the application of advanced treatment technologies under conditions commonly found in STPs.
Chemosphere | 2003
Athanasios S. Stasinakis; Nikolaos S. Thomaidis; Daniel Mamais; Marianna Karivali; Themistokles D. Lekkas
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.
Journal of Hazardous Materials | 2015
Vasiliki S. Thomaidi; Athanasios S. Stasinakis; Viola L. Borova; Nikolaos S. Thomaidis
The ecological threat associated with emerging pollutants detected in wastewater was estimated in country level. Treated wastewater was analyzed for pharmaceuticals and illicit drugs; whereas the concentrations of all emerging contaminants determined in Greek Sewage Treatment Plants were recorded through literature review. Toxicity data was collected after literature review or using ECOSAR and risk quotients (RQs) were calculated for treated wastewater and 25 Greek rivers, for 3 different aquatic organisms (fish, daphnia magna, algae). According to the results, monitoring data was available for 207 micropollutants belonging to 8 different classes. RQ>1 was calculated for 30 compounds in secondary treated wastewater. Triclosan presented RQ>1 (in algae) for all studied rivers; decamethylcyclopentasilane (in daphnia magna), caffeine (in algae) and nonylphenol (in fish) presented RQ>1 in rivers with dilution factors (DF) equal or lower to 1910, 913 and 824, respectively. The class of emerging contaminants that present the greatest threat due to single or mixture toxicity was endocrine disrupters. The mixture of microcontaminants seems to pose significant ecological risk, even in rivers with DF equal to 2388. Future national monitoring programs should include specific microcontaminants that seem to possess environment risk to surface water.
Environmental Science & Technology | 2013
Anna A. Bletsou; Alexandros G. Asimakopoulos; Athanasios S. Stasinakis; Nikolaos S. Thomaidis; Kurunthachalam Kannan
The occurrence and fate of 5 cyclic (D3 to D7) and 12 linear (L3 to L14) siloxanes were investigated in raw and treated wastewater (both particulate and dissolved phases) as well as in sludge from a wastewater treatment plant (WWTP) in Athens, Greece. Cyclic and linear siloxanes (except for L3) were detected in all influent wastewater and sludge samples at mean concentrations of (sum of 17 siloxanes) 20 μg L(-1) and 75 mg kg(-1), respectively. The predominant compounds in wastewater were L11 (24% of the total siloxane concentration), L10 (16%), and D5 (13%), and in sludge were D5 (20%) and L10 (15%). The distribution of siloxanes between particulate and dissolved phases in influents differed significantly for linear and cyclic siloxanes. Linear siloxanes showed higher solid-liquid distribution coefficients (log K(d)) than did cyclic compounds. For 10 of the 16 compounds detected in influents, the removal efficiency was higher than 80%. Sorption to sludge and biodegradation and/or volatilization losses are important factors that affect the fate of siloxanes in WWTPs. The mean total mass of siloxanes that enter into the WWTP via influent was 15.1 kg per day(-1), and the mean total mass released into the environment via effluent was 2.67 kg per day(-1).
Journal of Hazardous Materials | 2012
Olga S. Arvaniti; Elpida I. Ventouri; Athanasios S. Stasinakis; Nikolaos S. Thomaidis
The concentrations of eighteen perfluorinated compounds (PFCs: C5-C14 carboxylates, C4, C6-C8 and C10 sulfonates and 3 sulfonamides) were determined in wastewater and sludge samples originating from two different wastewater treatment plants (WWTPs). The analytes were extracted by solid phase extraction (dissolved phase) or sonication followed by solid phase extraction (solid phase). Qualitative and quantitative analyses were performed by LC-MS/MS. According to the results, perfluoropentanoic acid (PFPeA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were dominant in wastewater and sludge samples from both plants. The average concentrations in the raw and treated wastewater ranged up to 75.7 ng L(-1) (perfluorotridecanoic acid, PFTrDA) and 76.0 ng L(-1) (PFPeA), respectively. Concentrations of most PFCs were higher in effluents than in influents, indicating their formation during wastewater treatment processes. In sewage sludge, the average concentrations ranged up to 6.7 ng g(-1) dry weight (PFOS). No significant seasonal variations in PFCs concentrations were observed, while higher concentrations of PFOA, PFOS and perfluorononanoic acid (PFNA) were determined in the WWTP receiving municipal and industrial wastewater. Significantly different distribution coefficient (Kd) values were determined for different PFCs and different type of sludge, ranging between 169 L kg(-1) (PFHxS) to 12,922 L kg(-1) (PFDA).
Ecotoxicology and Environmental Safety | 2008
Athanasios S. Stasinakis; Daniel Mamais; Nikolaos S. Thomaidis; Elena Danika; Georgia Gatidou; Themistokles D. Lekkas
The toxic effects of triclosan (TCS) and nonylphenol (4-n-NP) on activated sludge heterotrophic and autotrophic microorganisms were evaluated. Toxicity experiments with specific oxygen uptake rate (SOUR) and ammonia uptake rate (AUR) revealed that TCS was much more toxic to heterotrophic and autotrophic microorganisms than 4-n-NP. In experiments with heterotrophic biomass, increase of sludge age (theta(c)) from 5 to 15 days resulted in a decrease of median effective concentrations (EC(50)) of TCS from 38.2 to 9.97 mg l(-1) and in an increase of EC(50) values of 4-n-NP from 441 to 649 mg l(-1). In experiments with autotrophic biomass and sludge age of 15 days, significantly lower EC(50) values were obtained for both compounds, indicating the higher sensitivity of nitrifiers to TCS and 4-n-NP. To compare toxicity of TCS and 4-n-NP towards single species and mixed wastewater cultures, experiments were performed using marine bacterium Vibrio fischeri. EC(50) values of 0.22 and 3.51 mg l(-1) were estimated for TCS and 4-n-NP, respectively, indicating the higher sensitivity of this bioassay to toxicants. According to the levels of tested compounds commonly found in influent wastewater and the results of this study, there is a possible risk for deterioration of nitrification in activated sludge systems due to the presence of TCS.