Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Athanasius F. M. Marée is active.

Publication


Featured researches published by Athanasius F. M. Marée.


Nature | 2007

Auxin transport is sufficient to generate a maximum and gradient guiding root growth

Verônica A. Grieneisen; Jian Xu; Athanasius F. M. Marée; Ben Scheres

The plant growth regulator auxin controls cell identity, cell division and cell expansion. Auxin efflux facilitators (PINs) are associated with auxin maxima in distal regions of both shoots and roots. Here we model diffusion and PIN-facilitated auxin transport in and across cells within a structured root layout. In our model, the stable accumulation of auxin in a distal maximum emerges from the auxin flux pattern. We have experimentally tested model predictions of robustness and self-organization. Our model explains pattern formation and morphogenesis at timescales from seconds to weeks, and can be understood by conceptualizing the root as an ‘auxin capacitor’. A robust auxin gradient associated with the maximum, in combination with separable roles of auxin in cell division and cell expansion, is able to explain the formation, maintenance and growth of sharply bounded meristematic and elongation zones. Directional permeability and diffusion can fully account for stable auxin maxima and gradients that can instruct morphogenesis.


PLOS Biology | 2008

Root System Architecture from Coupling Cell Shape to Auxin Transport

Marta Laskowski; Verônica A. Grieneisen; Hugo Hofhuis; Colette A. ten Hove; Athanasius F. M. Marée; Ben Scheres

Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina.

Jos Käfer; Takashi Hayashi; Athanasius F. M. Marée; Richard W. Carthew; François Graner

Because of the resemblance of many epithelial tissues to densely packed soap bubbles, it has been suggested that surface minimization, which drives soap bubble packing, could be governing cell packing as well. We test this by modeling the shape of the cells in a Drosophila retina ommatidium. We use the observed configurations and shapes in wild-type flies, as well as in flies with different numbers of cells per ommatidia, and mutants with cells where E- or N-cadherin is either deleted or misexpressed. We find that surface minimization is insufficient to model the experimentally observed shapes and packing of the cells based on their cadherin expression. We then consider a model in which adhesion leads to a surface increase, balanced by cell cortex contraction. Using the experimentally observed distributions of E- and N-cadherin, we simulate the packing and cell shapes in the wild-type eye. Furthermore, by changing only the corresponding parameters, this model can describe the mutants with different numbers of cells or changes in cadherin expression.


Nature Medicine | 2005

Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide

Bingye Han; Pau Serra; Abdelaziz Amrani; Jun Yamanouchi; Athanasius F. M. Marée; Leah Edelstein-Keshet; Pere Santamaria

Antigen therapy may hold great promise for the prevention of autoimmunity; however, most clinical trials have failed, suggesting that the principles guiding the choice of treatment remain ill defined. Here, we examine the antidiabetogenic properties of altered peptide ligands of CD8+ T cells recognizing an epitope of islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP206–214), a prevalent population of autoreactive T cells in autoimmune diabetes. We show that islet-associated CD8+ T cells in nonobese diabetic mice recognize numerous IGRP epitopes, and that these cells have a role in the outcome of protocols designed to induce IGRP206–214-specific tolerance. Ligands targeting IGRP206–214-reactive T cells prevented disease, but only at doses that spared low-avidity clonotypes. Notably, near complete depletion of the IGRP206–214-reactive T-cell pool enhanced the recruitment of subdominant specificities and did not blunt diabetogenesis. Thus, peptide therapy in autoimmunity is most effective under conditions that foster occupation of the target organ lymphocyte niche by nonpathogenic, low-avidity clonotypes.


Journal of Experimental Medicine | 2007

Lymph node topology dictates T cell migration behavior

Joost B. Beltman; Athanasius F. M. Marée; Jennifer N. Lynch; Mark J. Miller; Rob J. de Boer

Adaptive immunity is initiated by T cell recognition of foreign peptides presented on dendritic cells (DCs) by major histocompatibility molecules. These interactions take place in secondary lymphoid tissues, such as lymph nodes (LNs) and spleen, and hence the anatomical structure of these tissues plays a crucial role in the development of immune responses. Two-photon microscopy (2PM) imaging in LNs suggests that T cells walk in a consistent direction for several minutes, pause briefly with a regular period, and then take off in a new, random direction. Here, we construct a spatially explicit model of T cell and DC migration in LNs and show that all dynamical properties of T cells could be a consequence of the densely packed LN environment. By means of 2PM experiments, we confirm that the large velocity fluctuations of T cells are indeed environmentally determined rather than resulting from an intrinsic motility program. Our simulations further predict that T cells self-organize into microscopically small, highly dynamic streams. We present experimental evidence for the presence of such turbulent streams in LNs. Finally, the model allows us to estimate the scanning rates of DCs (2,000 different T cells per hour) and T cells (100 different DCs per hour).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen

Silvia Ariotti; Joost B. Beltman; Grzegorz Chodaczek; Mirjam E. Hoekstra; Anna E. van Beek; Laila Ritsma; Jacco van Rheenen; Athanasius F. M. Marée; Tomasz Zal; Rob J. de Boer; John B. A. G. Haanen; Ton N. M. Schumacher

Recent work has demonstrated that following the clearance of infection a stable population of memory T cells remains present in peripheral organs and contributes to the control of secondary infections. However, little is known about how tissue-resident memory T cells behave in situ and how they encounter newly infected target cells. Here we demonstrate that antigen-specific CD8+ T cells that remain in skin following herpes simplex virus infection show a steady-state crawling behavior in between keratinocytes. Spatially explicit simulations of the migration of these tissue-resident memory T cells indicate that the migratory dendritic behavior of these cells allows the detection of antigen-expressing target cells in physiologically relevant time frames of minutes to hours. Furthermore, we provide direct evidence for the identification of rare antigen-expressing epithelial cells by skin-patrolling memory T cells in vivo. These data demonstrate the existence of skin patrol by memory T cells and reveal the value of this patrol in the rapid detection of renewed infections at a previously infected site.


Nature Reviews Immunology | 2009

Analysing immune cell migration

Joost B. Beltman; Athanasius F. M. Marée; Rob J. de Boer

The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The role of fluctuations and stress on the effective viscosity of cell aggregates

Philippe Marmottant; Abbas Mgharbel; Jos Käfer; Benjamin Audren; Jean-Paul Rieu; Jean-Claude Vial; Boudewijn van der Sanden; Athanasius F. M. Marée; François Graner; Hélène Delanoë-Ayari

Cell aggregates are a tool for in vitro studies of morphogenesis, cancer invasion, and tissue engineering. They respond to mechanical forces as a complex rather than simple liquid. To change an aggregates shape, cells have to overcome energy barriers. If cell shape fluctuations are active enough, the aggregate spontaneously relaxes stresses (“fluctuation-induced flow”). If not, changing the aggregates shape requires a sufficiently large applied stress (“stress-induced flow”). To capture this distinction, we develop a mechanical model of aggregates based on their cellular structure. At stress lower than a characteristic stress τ*, the aggregate as a whole flows with an apparent viscosity η*, and at higher stress it is a shear-thinning fluid. An increasing cell–cell tension results in a higher η* (and thus a slower stress relaxation time tc). Our constitutive equation fits experiments of aggregate shape relaxation after compression or decompression in which irreversibility can be measured; we find tc of the order of 5 h for F9 cell lines. Predictions also match numerical simulations of cell geometry and fluctuations. We discuss the deviations from liquid behavior, the possible overestimation of surface tension in parallel-plate compression measurements, and the role of measurement duration.


PLOS Computational Biology | 2012

How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility

Athanasius F. M. Marée; Verônica A. Grieneisen; Leah Edelstein-Keshet

To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) , and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell “fronts”. This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model.


Immunology and Cell Biology | 2007

Spatial modelling of brief and long interactions between T cells and dendritic cells.

Joost B. Beltman; Athanasius F. M. Marée; Rob J. de Boer

In the early phases of an immune response, T cells of appropriate antigen specificity become activated by antigen‐presenting cells in secondary lymphoid organs. Two‐photon microscopy imaging experiments have shown that this stimulation occurs in distinct stages during which T cells exhibit different motilities and interactions with dendritic cells (DCs). In this paper, we utilize the Cellular Potts Model, a model formalism that takes cell shapes and cellular interactions explicitly into account, to simulate the dynamics of, and interactions between, T cells and DCs in the lymph node paracortex. Our three‐dimensional simulations suggest that the initial decrease in T‐cell motility after antigen appearance is due to ‘stop signals’ transmitted by activated DCs to T cells. The long‐lived interactions that occur at a later stage can only be explained by the presence of both stop signals and a high adhesion between specific T cells and antigen‐bearing DCs. Furthermore, our results indicate that long‐lasting contacts with T cells are promoted when DCs retract dendrites that detect a specific contact at lower velocities than other dendrites. Finally, by performing long simulations (after prior fitting to short time scale data) we are able to provide an estimate of the average contact duration between T cells and DCs.

Collaboration


Dive into the Athanasius F. M. Marée's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah Edelstein-Keshet

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ben Scheres

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge