Athanassios D. Velentzas
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athanassios D. Velentzas.
Autophagy | 2009
Ioannis P. Nezis; Trond Lamark; Athanassios D. Velentzas; Tor Erik Rusten; Geir Bjørkøy; Terje Johansen; Issidora S. Papassideri; Dimitrios J. Stravopodis; Lukas H. Margaritis; Harald Stenmark; Andreas Brech
Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.
Journal of Proteomics | 2012
Marianna H. Antonelou; Vassilis L. Tzounakas; Athanassios D. Velentzas; Konstantinos E. Stamoulis; Anastasios G. Kriebardis; Issidora S. Papassideri
The introduction of pre-storage leukoreduction in the preparation of standard RBCs intended for transfusion provided significant improvement in the quality of labile products and their post transfusion viability and effects, although the literature data are controversial. To elucidate the issue of the probable leukoreduction effects on RBCs storage lesion, we evaluated various storage quality measures in RBCs stored in either leukoreduced (L) or non-leukoreduced (N) units, with emphasis to senescence and oxidative stress associated modifications. Our data suggest that the residual leukocytes/platelets of the labile products represent a stressful storage factor, countering the structural and functional integrity of stored RBCs. Hemolysis, irreversible echinocytosis, microvesiculation, removal signaling, ROS/calcium accumulation, band 3-related senescence modifications, membrane proteome stress biomarkers as well as emergence of a senescence phenotype in young RBCs that is disproportionate to their age, are all encountered more or mostly in N-RBCs compared to the L-RBCs, either for a part or for the whole of the storage period. The partial, yet significant, alleviation of so many storage-related manifestations in the L-RBCs compared to the N-RBCs, is presented for the first time and provides a rational mechanistic interpretation of the improved storage quality and transfusions observed by the introduction of pre-storage leukoreduction. This article is part of a Special Issue entitled: Integrated omics.
Cell and Tissue Research | 2006
Athanassios D. Velentzas; Ioannis P. Nezis; Dimitrios J. Stravopodis; Issidora S. Papassideri; Lukas H. Margaritis
We describe the features of programmed cell death occurring in the egg chambers of Drosophila virilis during mid-oogenesis and late oogenesis. During mid-oogenesis, the spontaneously degenerating egg chambers exhibit typical characteristics of apoptotic cell death. As revealed by propidium iodide, rhodamine-conjugated phalloidin staining, and the TUNEL assay, respectively, the nurse cells contain condensed chromatin, altered actin cytoskeleton, and fragmented DNA. In vitro caspase activity assays and immunostaining procedures demonstrate that the atretic egg chambers possess high levels of caspase activity. Features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining, together with an ultrastructural examination by transmission electron microscopy. During the late stages of oogenesis in D. virilis, once again, the two mechanisms, viz., nurse cell cluster apoptosis and autophagy, operate together, manifesting features of cell death similar to those detailed above. Moreover, an altered form of cytochrome c seems to be released from the mitochondria in the nurse cells proximal to the oocyte. We propose that apoptosis and autophagy function synergistically during oogenesis in D. virilis in order to achieve a more efficient elimination of the degenerated nurse cells and abnormal egg chambers.
Autophagy | 2007
Athanassios D. Velentzas; Ioannis P. Nezis; Dimitrios J. Stravopodis; Issidora S. Papassideri; Lukas H. Margaritis
Programmed cell death consists of two major types, apoptotic and autophagic, both of which are mainly defined by morphological criteria. Our findings indicate that both types of programmed cell death occur in the ovarian nurse cells during middle and late oogenesis of Drosophila virilis. During mid-oogenesis, the spontaneously degenerated egg chambers exhibit typical characteristics of apoptotic cell death. Their nurse cells contain condensed chromatin and fragmented DNA, whereas active caspase assays and immunostaining procedures demonstrate the presence of highly activated caspases. Distinct features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining and ultrastructural examination performed by transmission electron microscopy. Additionally, atretic egg chambers exhibit an accumulation of lysosomal proteases. At the late stages of D. virilis oogenesis, apoptosis and autophagy coexist, manifesting cell death features that are similar to the ones described above, being also escorted by the involvement of an altered cytochrome c conformational display. We propose that apoptosis and autophagy operate synergistically during D. virilis oogenesis for a more efficient elimination of the degenerated nurse cells. Addendum to: Mechanisms of Programmed Cell Death During Oogenesis in Drosophila virilis A.D. Velentzas, I.P. Nezis, D.J. Stravopodis, I.S. Papassideri and L.H. Margaritis Cell Tissue Res 2006; doi: 10.1007/s00441-006-0298-x
Cell Biology and Toxicology | 2013
Panagiotis D. Velentzas; Athanassios D. Velentzas; Vassiliki E. Mpakou; Marianna H. Antonelou; Lukas H. Margaritis; Issidora S. Papassideri; Dimitrios J. Stravopodis
In eukaryotes, the ubiquitin–proteasome machinery regulates a number of fundamental cellular processes through accurate and tightly controlled protein degradation pathways. We have, herein, examined the effects of proteasome functional disruption in Dmp53+/+ (wild-type) and Dmp53−/−Drosophila melanogaster fly strains through utilization of Bortezomib, a proteasome-specific inhibitor. We report that proteasome inhibition drastically shortens fly life-span and impairs climbing performance, while it also causes larval lethality and activates developmentally irregular cell death programs during oogenesis. Interestingly, Dmp53 gene seems to play a role in fly longevity and climbing ability. Moreover, Bortezomib proved to induce endoplasmic reticulum (ER) stress that was able to result in the engagement of unfolded protein response (UPR) signaling pathway, as respectively indicated by fly Xbp1 activation and Ref(2)P-containing protein aggregate formation. Larva salivary gland and adult brain both underwent strong ER stress in response to Bortezomib, thus underscoring the detrimental role of proteasome inhibition in larval development and brain function. We also propose that the observed upregulation of autophagy operates as a protective mechanism to “counterbalance” Bortezomib-induced systemic toxicity, which is tightly associated, besides ER stress, with activation of apoptosis, mainly mediated by functional Drice caspase and deregulated dAkt kinase. The reduced life-span of exposed to Bortezomib flies overexpressing Atg1_RNAi or Atg18_RNAi supports the protective nature of autophagy against proteasome inhibition-induced stress. Our data reveal the in vivo significance of proteasome functional integrity as a major defensive system against cellular toxicity likely occurring during critical biological processes and morphogenetic courses.
Journal of Proteomics | 2014
Marianna H. Antonelou; Hara T. Georgatzakou; Vasillis L. Tzounakas; Athanassios D. Velentzas; Apostolos C. Kokkalis; Anastasios G. Kriebardis; Issidora S. Papassideri
UNLABELLED Chronic kidney disease is a risk factor for cardiovascular mortality. This study uncovers pieces of hematological and erythrocyte protein variability observed in end stage renal disease (ESRD) in relation to disease progression/duration and mortality. Using a variety of experimental approaches, erythropoietin/dialysis-treated patients were compared to healthy individuals and had been followed for 36months. During that period, half of the patients died from cardiovascular diseases. The high levels of uremic toxins in those patients were associated with damaged erythrocytes, bad tolerance and poor response to hemodialysis therapy. The postmortem study revealed significant variation in alkaline phosphatase, duration of dialysis, erythrocyte transformation and intracellular hemoglobin concentration compared to the survived patients. The erythrocyte proteins showed substantial remodeling characteristic of pathologic regulation of cell hydration and susceptibility to the dialysis-induced oxidation defects. According to the follow-up study, duration of hemodialysis was associated with a trend towards increased intracellular hemoglobin concentration, membrane expression of glucose transporter-1 and stomatin as well as lower levels of circulating stomatocytes. The uremic index variation in long survived patients is accurately reflected in plasma and erythrocyte oxidative stress modifications. The ESRD patients exhibit impressive compensatory responses to the chronic challenges of the uremic milieu. BIOLOGICAL SIGNIFICANCE This study demonstrates novel blood modifications probably associated with the duration of erythropoietin/hemodialysis treatment, disease progression and cardiovascular mortality in end stage renal disease. The observed variability adds new pieces to the erythrocyte pathophysiology puzzle in end stage renal disease and suggests novel hematologic and proteomic factors for consideration in future large scale studies on cardiovascular morbidity and mortality candidate biomarkers in uremic patients.
Molecular Cancer | 2015
Eumorphia G. Konstantakou; Gerassimos E. Voutsinas; Athanassios D. Velentzas; Aggeliki-Stefania Basogianni; Efthimios Paronis; Evangelos Balafas; Nikolaos Kostomitsopoulos; Konstantinos Syrigos; Ema Anastasiadou; Dimitrios J. Stravopodis
BackgroundUrinary bladder cancer is one of the most fatal and expensive diseases of industrialized world. Despite the strenuous efforts, no seminal advances have been achieved for its clinical management. Given the importance of metabolic reprogramming in cancer cell survival and growth, we have herein employed 3-BrPA, a halogenated derivative of pyruvate and historically considered inhibitor of glycolysis, to eliminate bladder cancer cells with highly oncogenic molecular signatures.MethodsBladder cancer cells were exposed to 3-BrPA in the absence or presence of several specific inhibitors. Cell viability was determined by MTT and flow-cytometry assays; cell death, signaling activity and metabolic integrity by Western blotting and immunofluorescence; mutant-gene profiling by DNA sequencing; and gene expression by RT-sqPCR.Results3-BrPA could activate dose-dependent apoptosis (type 1 PCD) and regulated necrosis (type 3 PCD) of T24 (grade III; H-RasG12V; p53ΔY126), but not RT4 (grade I), cells, with PARP, MLKL, Drp1 and Nec-7-targeted components critically orchestrating necrotic death. However, similarly to RIPK1 and CypD, p53 presented with non-essential contribution to 3-BrPA-induced cellular collapse, while reactivation of mutant p53 with PRIMA-1 resulted in strong synergism of the two agents. Given the reduced expression of MPC components (likely imposing mitochondrial dysfunction) in T24 cells, the suppression of constitutive autophagy (required by cells carrying oncogenic Ras; also, type 2 PCD) and derangement of glucose-homeostasis determinants by 3-BrPA critically contribute to drug-directed depletion of ATP cellular stores. This bioenergetic crisis is translated to severe dysregulation of Akt/FoxO/GSK-3, mTOR/S6, AMPK and MAPK (p44/42, p38 and SAPK/JNK) signaling pathways in 3-BrPA-treated T24 cells. Sensitivity to 3-BrPA (and tolerance to glucose deprivation) does not rely on B-RafV600E or K-RasG13D mutant oncogenic proteins, but partly depends on aberrant signaling activities of Akt, MAPK and AMPK kinases. Interestingly, MCT1- and macropinocytosis-mediated influx of 3-BrPA in T24 represents the principal mechanism that regulates cellular responsiveness to the drug. Besides its capacity to affect transcription in gene-dependent manner, 3-BrPA can also induce GLUT4-specific splicing silencing in both sensitive and resistant cells, thus dictating alternative routes of drug trafficking.ConclusionsAltogether, it seems that 3-BrPA represents a promising agent for bladder cancer targeted therapy.
Development Growth & Differentiation | 2011
Vassiliki E. Mpakou; Athanassios D. Velentzas; Panagiotis D. Velentzas; Lukas H. Margaritis; Dimitrios J. Stravopodis; Issidora S. Papassideri
Programmed cell death (PCD) is an evolutionary conserved and genetically regulated form of cell death, in which the cell plays an active role in its own demise. It is widely recognized that PCD can be morphologically classified into three major types: type I, known as apoptosis, type II, called autophagy, and type III, specified as cytoplasmic cell death. So far, PCD has been morphologically analyzed in certain model insect species of the meroistic polytrophic ovary‐type, but has never been examined before in insects carrying meroistic telotrophic ovaries. In the present study, we attempted to thoroughly describe the three different types (I, II and III) of PCD occurring during oogenesis in the meroistic telotrophic ovary of the Coleoptera species Adalia bipunctata, at different developmental ages of the adult female insects. We reveal that in the ladybird beetle A. bipunctata, the ovarian tropharia undergo age‐dependent forms of apoptotic, autophagic and cytoplasmic (paraptotic‐like) cell death, which seem to operate in a rather synergistic fashion, in accordance with previous observations in Diptera and Lepidoptera species. Furthermore, we herein demonstrate the occurrence of morphogenetically abnormal ovarioles in A. bipunctata female insects. These atretic ovarioles collapse and die through a PCD‐mediated process that is characterized by the combined activation of all three types of PCD. Conclusively, the distinct cell death programs (I, II and III) specifically engaged during oogenesis of A. bipunctata provide strong evidence for the structural and functional conserved nature of PCD during insect evolution among meroistic telotrophic and meroistic polytrophic ovary‐type insects.
PLOS ONE | 2013
Panagiotis D. Velentzas; Athanassios D. Velentzas; Asimina D. Pantazi; Vassiliki E. Mpakou; Christos G. Zervas; Issidora S. Papassideri; Dimitrios J. Stravopodis
Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.
Cell Biology International | 2011
Panagiotis D. Velentzas; Athanassios D. Velentzas; Vassiliki E. Mpakou; Issidora S. Papassideri; Dimitrios J. Stravopodis; Lukas H. Margaritis
Ubiquitin/proteasome‐mediated degradation of eukaryotic proteins is critically implicated in a number of signalling pathways and cellular processes. To specifically impair proteasome activities, in vitro developing Drosophila melanogaster egg chambers were exposed to the MG132 or epoxomicin proteasome inhibitors, while a GAL4/UAS binary genetic system was employed to generate double transgenic flies overexpressing β2 and β6 conditional mutant proteasome subunits in a cell type‐specific manner. MG132 and epoxomicin administration resulted in severe deregulation of in vitro developing egg chambers, which was tightly associated with precocious induction of nurse cell‐specific apoptotic and autophagic death programmes, featured by actin cytoskeleton disorganization, nuclear chromatin condensation, DRICE caspase activation and autophagosome accumulation. In vivo targeted overexpression of β2 and β6 conditional mutants, specifically in the nurse cell compartment, led to a notable up‐regulation of sporadic apoptosis potency during early and mid‐oogenesis ‘checkpoints’, thus reasonably justifying the observed reduction in eclosion efficiency. Furthermore, in response to the intracellular abundance of β2 and β6 conditional mutant forms, specifically in numerous tissues of third instar larval stage, the developmental course was arrested, and lethal phenotypes were obtained at this particular embryonic period, with the double transgenic heterozygote embryos being unable to further proceed to complete maturation to adult flies. Our data demonstrate that physiological proteasome function is required to ensure normal oogenesis and embryogenesis in D. melanogaster, since targeted and cell type‐dependent proteasome inactivation initiates developmentally deregulated apoptotic and autophagic mechanisms.