Athanassios Fragoulis
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athanassios Fragoulis.
Annals of the Rheumatic Diseases | 2011
Christoph Jan Wruck; Athanassios Fragoulis; Agata Gurzynski; Lars-Ove Brandenburg; Yuet Wai Kan; Kaimin Chan; Joachim Hassenpflug; Sandra Freitag-Wolf; Deike Varoga; Sebastian Lippross; Thomas Pufe
Objectives Increasing evidence suggests that oxidative stress may play a key role in joint destruction due to rheumatoid arthritis (RA). The aim of this study was to elucidate the role of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that maintains the cellular defence against oxidative stress, in RA. Methods The activation status of Nrf2 was assessed in synovial tissue from patients with RA using immunohistochemistry. Antibody-induced arthritis (AIA) was induced in Nrf2-knockout and Nrf2-wild-type control mice. The severity of cartilage destruction was evaluated using a damage score. The extent of oxidative stress, the activation state of Nrf2 and the expression level of Nrf2 target genes were analysed by immunhistological staining. The expression of vascular endothelial growth factor (VEGF)-A was examined on mRNA and protein using the Luminex technique. A Xenogen imaging system was used to measure Nrf2 activity in an antioxidant response element-luciferase transgenic mouse during AIA. Results Nrf2 was activated in the joints of arthritic mice and of patients with RA. Nrf2-knockout mice had more severe cartilage injuries and more oxidative damage, and the expression of Nrf2 target genes was enhanced in Nrf2-wild-type but not in knockout mice during AIA. Both VEGF-A mRNA and protein expression was upregulated in Nrf2-knockout mice during AIA. An unexpected finding was the number of spontaneously fractured bones in Nrf2-knockout mice with AIA. Conclusion These results provide strong evidence that oxidative stress is significantly involved in cartilage degradation in experimental arthritis, and indicate that the presence of a functional Nrf2 gene is a major requirement for limiting cartilage destruction.
Journal of Biological Chemistry | 2011
Nisreen Kweider; Athanassios Fragoulis; Christian Rosen; Ulrich Pecks; Werner Rath; Thomas Pufe; Christoph Jan Wruck
Background: Several studies have suggested that decreasing VEGF levels might result in placental oxidative stress in preeclampsia. Results: VEGF activates Nrf2 in an ERK1/2-dependent manner, protecting against oxidative stress, and, in turn, up-regulates VEGF expression. Conclusion: Reduced VEGF bioavailability may lead to aggregation of oxidative stress and result in preeclampsia. Significance: Nrf2 activation might be considered as an adjunct therapeutic strategy to combat preeclampsia. Several recently published studies have suggested that decreasing VEGF levels result in placental oxidative stress in preeclampsia, although the question as to how decreased VEGF concentrations increase oxidative stress still remains unanswered. Here, we show that VEGF activated Nrf2, the main regulating factor of the intracellular redox balance, in the cytotrophic cell line BeWo. In turn, this activated the production of antioxidative enzymes thioredoxin, thioredoxin reductase, and heme oxygenase-1, which showed a decrease in their expression in the placentas of preeclamptic women. Nevertheless, this activation occurred without oxidative stress stimulus. As a consequence, the activation of Nrf2 protected BeWo cells against H2O2/Fe2+-induced oxidative damage. We further show that VEGF up-regulated the expression of itself. A positive feedback loop was described in which VEGF activated Nrf2 in an ERK1/2-dependent manner; the up-regulation of HO-1 expression by Nrf2 augmented the production of carbon monoxide, which in turn up-regulated VEGF expression. In conclusion, VEGF induces the Nrf2 pathway to protect against oxidative stress and, via a positive feedback loop, to elevate VEGF expression. Therefore, decreased VEGF bioavailability during preeclampsia may result in higher vulnerability to placental oxidative cell damage and a further reduction of VEGF bioavailability, a vicious circle that may end up in preeclampsia.
Stem Cells and Development | 2012
Christoph Patrick Beier; Praveen Kumar; Katharina Meyer; Petra Leukel; Valentin Bruttel; Ines Aschenbrenner; Markus J. Riemenschneider; Athanassios Fragoulis; Petra Rümmele; Katrin Lamszus; Jörg B. Schulz; Joachim Weis; Ulrich Bogdahn; Jörg Wischhusen; Peter Hau; Rainer Spang; Dagmar Beier
Immune cell infiltration varies widely between different glioblastomas (GBMs). The underlying mechanism, however, remains unknown. Here we show that TGF-beta regulates proliferation, migration, and tumorigenicity of mesenchymal GBM cancer stem cells (CSCs) in vivo and in vitro. In contrast, proneural GBM CSCs resisted TGF-beta due to TGFR2 deficiency. In vivo, a substantially increased infiltration of immune cells was observed in mesenchymal GBMs, while immune infiltrates were rare in proneural GBMs. On a functional level, proneural CSC lines caused a significantly stronger TGF-beta-dependent suppression of NKG2D expression on CD8(+) T and NK cells in vitro providing a mechanistic explanation for the reduced immune infiltration of proneural GBMs. Thus, the molecular subtype of CSCs TGF-beta-dependently contributes to the degree of immune infiltration.
Clinical Science | 2015
Othman Al-Sawaf; Tim Clarner; Athanassios Fragoulis; Yuet Wai Kan; Thomas Pufe; Konrad L. Streetz; Christoph Jan Wruck
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.
Arthritis Research & Therapy | 2012
Athanassios Fragoulis; Jendrik Laufs; Susanna Müller; Ulf Soppa; Stephanie Siegl; Lucy Kathleen Reiss; Mersedeh Tohidnezhad; Christian Rosen; Klaus Tenbrock; Deike Varoga; Sebastian Lippross; Thomas Pufe; Christoph Jan Wruck
IntroductionRheumatoid arthritis (RA) is characterized by progressive inflammation associated with rampantly proliferating synoviocytes and joint destruction due to oxidative stress. Recently, we described nuclear factor erythroid 2-related factor 2 (Nrf2) as a major requirement for limiting cartilage destruction. NF-κB and AP-1 are the main transcription factors triggering the inflammatory progression in RA. We used sulforaphane, an isothiocyanate, which is both an Nrf2 inducer and a NF-κB and AP-1 inhibitor.MethodsCultured synoviocytes were stimulated with sulforaphane (SFN) with or without TNF-α pre-treatment. NF-κB, AP-1, and Nrf2 activation was investigated via dual luciferase reporter gene assays. Matrix metalloproteinases (MMPs) were measured via zymography and luminex technique. Cytokine levels were detected using ELISA. Cell viability, apoptosis and caspase activity were studied. Cell proliferation was analysed by real-time cell analysis.ResultsSFN treatment decreased inflammation and proliferation dose-dependently in TNF-α-stimulated synoviocytes. SFN did not reduce MMP-3 and MMP-9 activity or expression significantly. Interestingly, we demonstrated that SFN has opposing effects on naïve and TNF-α-stimulated synoviocytes. In naïve cells, SFN activated the cytoprotective transcription factor Nrf2. In marked contrast to this, SFN induced apoptosis in TNF-α-pre-stimulated synoviocytes.ConclusionsWe were able to show that SFN treatment acts contrary on naïve and inflammatory synoviocytes. SFN induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it induces apoptosis in inflamed synoviocytes. These findings indicate that the use of sulforaphane might be considered as an adjunctive therapeutic strategy to combat inflammation, pannus formation, and cartilage destruction in RA.
The Journal of Pathology | 2014
Othman Al-Sawaf; Athanassios Fragoulis; Christian Rosen; Nora Keimes; Elisa A. Liehn; Frank Hölzle; Yuet Wai Kan; Thomas Pufe; Tolga Taha Sönmez; Christoph Jan Wruck
Skeletal muscles harbour a resident population of stem cells, termed satellite cells (SCs). After trauma, SCs leave their quiescent state to enter the cell cycle and undergo multiple rounds of proliferation, a process regulated by MyoD. To initiate differentiation, fusion and maturation to new skeletal muscle fibres, SCs up‐regulate myogenin. However, the regulation of these myogenic factors is not fully understood. In this study we demonstrate that Nrf2, a major regulator of oxidative stress defence, plays a role in the expression of these myogenic factors. In both promoter studies with myoblasts and a mouse model of muscle injury in Nrf2‐deficient mice, we show that Nrf2 prolongs SC proliferation by up‐regulating MyoD and suppresses SC differentiation by down‐regulating myogenin. Moreover, we show that IL‐6 and HGF, both factors that facilitate SC activation, induce Nrf2 activity in myoblasts. Thus, Nrf2 activity promotes muscle regeneration by modulating SC proliferation and differentiation and thereby provides implications for tissue regeneration.Copyright
International Journal of Molecular Sciences | 2014
Rainer Beckmann; Astrid Houben; Mersedeh Tohidnezhad; Nisreen Kweider; Athanassios Fragoulis; Christoph Jan Wruck; Lars Ove Brandenburg; Benita Hermanns-Sachweh; Mary B. Goldring; Thomas Pufe; Holger Jahr
Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA) studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1). The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies.
The Scientific World Journal | 2014
Rainer Beckmann; Hayfaa Shaheen; Nisreen Kweider; Alireza Ghassemi; Athanassios Fragoulis; Benita Hermanns-Sachweh; Thomas Pufe; Mamed Kadyrov; Wolf Drescher
Nontraumatic osteonecrosis of the femoral head is still a challenging problem in orthopedic surgery. It is responsible for 10% of the 500,000 hip replacement surgeries in the USA and affects relatively young, active patients in particular. Main reasons for nontraumatic osteonecrosis are glucocorticoid use, alcoholism, thrombophilia, and hypofibrinolysis (Glueck et al., 1997; Orth and Anagnostakos, 2013). One pathomechanism of steroid-induced osteonecrosis is thought to be impaired blood flow to the femoral head caused by increased thrombus formation and vasoconstriction. To investigate the preventive effect of enoxaparin on steroid-related osteonecrosis, we used male New Zealand white rabbits. Osteonecrosis was induced by methylprednisolone-injection (1 × 20 mg/kg body weight). Control animals were treated with phosphate-buffered saline. Treatment consisted of an injection of 11.7 mg/kg body weight of enoxaparin per day (Clexane) in addition to methylprednisolone. Four weeks after methylprednisolone-injection the animals were sacrificed. Histology (hematoxylin-eosin and Ladewig staining) was performed, and empty lacunae and histological signs of osteonecrosis were quantified. Histomorphometry revealed a significant increase in empty lacunae and necrotic changed osteocytes in glucocorticoid-treated animals as compared with the glucocorticoid- and Clexane-treated animals and with the control group. No significant difference was detected between the glucocorticoid and Clexane group and the control group. This finding suggests that cotreatment with enoxaparin has the potential to prevent steroid-associated osteonecrosis.
Glia | 2016
T. Draheim; A. Liessem; M. Scheld; F. Wilms; M. Weißflog; B. Denecke; T.W. Kensler; A. Zendedel; Cordian Beyer; Markus Kipp; C.J. Wruck; Athanassios Fragoulis; Tim Clarner
Oxidative stress critically contributes to the pathogenesis of a variety of neurodegenerative diseases such as multiple sclerosis. Astrocytes are the main regulators of oxidative homeostasis in the brain and dysregulation of these cells likely contributes to the accumulation of oxidative damage. The nuclear factor erythroid 2‐related factor 2 (Nrf2) is the main transcriptional regulator of the anti‐oxidant stress defense. In this study, we elucidate the effects of astrocytic Nrf2‐activation on brain‐intrinsic inflammation and lesion development. Cells deficient for the Nrf2 repressor kelch‐like ECH‐associated protein 1 (Keap1) are characterized by hyperactivation of Nrf2‐signaling. Therefore, wild type mice and mice with a GFAP‐specific Keap1‐deletion were fed with 0.25% cuprizone for 1 or 3 weeks. Cuprizone intoxication induced pronounced oligodendrocyte loss, demyelination and reactive gliosis in wild type animals. In contrast, astrocyte‐specific Nrf2‐activation was sufficient to prevent oligodendrocyte loss and demyelination, to ameliorate brain intrinsic inflammation and to counteract axonal damage. Our results highlight the potential of the Nrf2/ARE system for the treatment of neuroinflammation in general and of multiple sclerosis in particular.
Scientific Reports | 2015
Othman Al-Sawaf; Athanassios Fragoulis; Christian Rosen; Yuet Wai Kan; Tolga Taha Sönmez; Thomas Pufe; Christoph Jan Wruck
Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.