Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Athanassios Sambanis is active.

Publication


Featured researches published by Athanassios Sambanis.


Tissue Engineering | 1995

Tissue engineering: from biology to biological substitutes.

Robert M. Nerem; Athanassios Sambanis

Tissue engineering is an emerging multidisciplinary and interdisciplinary field involving the development of bioartificial implants and/or the fostering of tissue remodeling with the purpose of repairing or enhancing tissue or organ function. Bioartificial constructs generally consist of cells and biomaterials, so tissue engineering draws from both cell and biomaterials science and technology. Successful applications require a thorough understanding of the environment experienced by cells in normal tissues and by cells in bioartificial devices before and after implantation. This paper reviews these topics, as well as the current status and future possibilities in the development of different bioartificial constructs, including bioartificial skin, cardiovascular implants, bioartificial pancreas, and encapsulated secretory cells. Issues that need to be addressed in the future are also discussed. These include, but are not limited to, the development of new cell lines and biomaterials, the evaluation of the optimal construct architecture, and the reproducible manufacture and preservation of bioartificial devices until ready for use.


Tissue Engineering | 2001

Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes.

Christopher L. Murphy; Athanassios Sambanis

The implantation of laboratory-grown tissue offers a valuable alternative approach to the treatment of cartilage defects. Procuring sufficient cell numbers for such tissue-engineered cartilage is a major problem since amplification of chondrocytes in culture typically leads to loss of normal cell phenotype yielding cartilage of inferior quality. In an effort to overcome this problem, we endeavored to regain the differentiated phenotype of chondrocytes after extensive proliferation in monolayer culture by modulating cell morphology and oxygen tension towards the in vivo state. Passaged cells were encapsulated in alginate hydrogel in an effort to regain the more rounded shape characteristic of differentiated chondrocytes. These cultures were exposed to reduced (5%-i.e., physiological), or control (20%) oxygen tensions. Both alginate encapsulation and reduced oxygen tension significantly upregulated collagen II and aggrecan core protein expression (differentiation markers). In fact, after 4 weeks in alginate at 5% oxygen, differentiated gene expression was comparable to primary chondrocytes. Collagen I expression (dedifferentiation marker) decreased dramatically after alginate entrapment, while reduced oxygen tension had no effect. It is concluded that alginate encapsulation and reduced oxygen tension help restore key differentiated phenotypic markers of passaged chondrocytes. These findings have important implications for cartilage tissue engineering, since they enable the increase in differentiated cell numbers needed for the in vitro development of functional cartilaginous tissue suitable for implantation.


Biomaterials | 2003

A biological hybrid model for collagen-based tissue engineered vascular constructs

Joseph D. Berglund; Michael M. Mohseni; Robert M. Nerem; Athanassios Sambanis

Various approaches to tissue engineering a small diameter blood vessel have historically relied upon extended culturing periods and/or synthetic materials to create mechanical properties suitable to withstand the hemodynamic stresses of the vasculature. In this work, we present the concept of a construct-sleeve hybrid (CSH) graft, which uses a biological support to provide temporary reinforcement while cell-mediated remodeling of the construct occurs. Support sleeves were fabricated from Type I collagen gels and crosslinked with glutaraldehyde, ultraviolet, or dehydrothermal treatments. Uniaxial tensile testing of acellular sleeves revealed increased stiffness moduli and tensile stresses with crosslinking treatments. A second collagen layer containing cells was molded about the sleeve to create a CSH. After in vitro culture, CHSs with uncrosslinked (UnXL) and glutaraldehyde treated (Glut) sleeves exhibited significant increases in mechanical strength (20.4-fold and 121-fold increases in ultimate stress, respectively) compared to unreinforced control constructs. Burst testing produced similar findings with peak pressures of 100 and 650mmHg in the UnXL and Glut CSHs, respectively. Construct compaction, cell viability, and histological examination demonstrated that the function of most cells remained unimpaired with the incorporation of the biological support sleeve.


Biomaterials | 2001

The effects of alginate composition on encapsulated βTC3 cells

Cheryl L. Stabler; K Wilks; Athanassios Sambanis; Ioannis Constantinidis

The effects of alginate composition on the growth of murine insulinoma βTC3 cells encapsulated in alginate/poly-l-lysine/alginate (APA) beads, and on the overall metabolic and secretory characteristics of the encapsulated cell system, were investigated for four different types of alginate. Two of the alginates used had a high guluronic acid content (73% in guluronic acid residues) with varying molecular weight, while the other two had a high mannuronic acid content (68% in mannuronic acid residues) with varying molecular weight. Each composition was tested using two different polymer concentrations. Our data show that βTC3 cells encapsulated in alginates with a high guluronic acid content experienced a transient hindrance in their metabolic and secretory activity because of growth inhibition. Conversely, βTC3 cells encapsulated in alginates with a high mannuronic acid content experienced a rapid increase in metabolic and secretory activity as a result of rapid cell growth. Our data also demonstrate that an increase in either molecular weight or concentration of high mannuronic acid alginates did not alter the behavior of the encapsulated βTC3 cells. Conversely, an increase in molecular weight and concentration of high guluronic acid alginates prolonged the hindrance of glucose metabolism, insulin secretion and cell growth. These observations can be best interpreted by changes in the microstructure of the alginate matrix, i.e., interaction between the contiguous guluronic acid residues and the Ca2+ ions, as a result of the different compositions.


Diabetes Technology & Therapeutics | 2003

Encapsulated Islets in Diabetes Treatment

Athanassios Sambanis

Encapsulation of insulin-producing cells in semipermeable membranes has the potential to provide an effective treatment for insulin-dependent diabetes with little or no immunosuppression of the host. Improvements in alginate, a marine polysaccharide commonly used for cell encapsulation, have revived interest in this material. However, serious obstacles, including a reliable cell source and a better understanding of immune acceptance issues, remain to be addressed before a clinically applicable therapeutic procedure based on encapsulated cells becomes available.


Biomaterials | 1999

Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells

Ioannis Constantinidis; Inge Rask; Robert Long; Athanassios Sambanis

The effects of alginate composition on cell growth as well as the metabolic and secretory profile of transformed beta-cells entrapped in alginate/poly-L-lysine/alginate (APA) solid beads were investigated following entrapment of beta TC3 mouse insulinoma cells in alginate composed of either high mannuronic acid or high guluronic acid residues. Entrapped cultures were maintained in spinner flasks for 40-60 days. The pattern of cell growth and the overall rates of glucose consumption and insulin secretion were investigated. Cultures of beta TC3 cells entrapped in alginate composed predominantly of mannuronic acid units (77%) displayed a linear increase in the rates of glucose consumption and insulin secretion concomitant with an increase in cell population in the periphery of the beads. Conversely, cultures of beta TC3 cells entrapped in alginate composed predominantly of high guluronic acid units (69%) displayed a decrease in the rates of glucose consumption and insulin secretion during the first three weeks of culture, followed by a rapid recovery that surpassed the initial rates by day 40. This biphasic pattern was concomitant to a decrease in viable cells during the first three weeks as ascertained by histology, followed by an increase in cell proliferation. Cell growth in high guluronic acid alginate took place at random locations throughout the solid bead and not in the periphery, as was the case in high mannuronic acid alginate preparations. Possible reasons for these differences and the significance of these findings in the context of a bioartificial pancreas composed of APA entrapped transformed cells are discussed.


Biotechnology and Bioengineering | 1999

Development of a bioartificial pancreas: II. Effects of oxygen on long‐term entrapped βTC3 cell cultures

Klearchos K. Papas; Robert Long; Athanassios Sambanis; Ioannis Constantinidis

Tissue-engineered pancreatic constructs based on immunoisolated, insulin-secreting cells are promising in providing an effective, relatively inexpensive, long-term treatment for type I (insulin-dependent) diabetes. An in vitro characterization of construct function under conditions mimicking the in vivo environment is essential prior to any extensive animal experimentation. Encapsulated cells may experience hypoxic conditions postimplantation as a result of one or more of the following: the design of the construct; the environment at the implantation site; or the development of fibrosis around the construct. In this work, we studied the effects of 3- and 4-day-long hypoxic episodes on the metabolic and secretory activities and on the levels of intracellular metabolites detectable by phosphorus-31 nuclear magnetic resonance ((31)P NMR) of alginate/poly-L-lysine/alginate entrapped betaTC3 mouse insulinomas continuously perfused with culture medium. Results show that, upon decreasing the oxygen concentration in the surrounding medium, the encapsulated cell system reached a new, lower metabolic and secretory state. Hypoxia drove the cells to a more anaerobic glycolytic metabolism, increased the rates of glucose consumption (GCR) and lactate production (LPR), and reduced the rates of oxygen consumption (OCR) and insulin secretion (ISR). Furthermore, hypoxia reduced the levels of intracellular nucleotide triphosphates (NTP) and phosphorylcholine (PC) and caused a rapid transient increase in inorganic phosphate (P(i)). Upon restoration of the oxygen concentration in the perfusion medium, all parameters returned to their prehypoxic levels within 2 to 3 days following either gradual unidirectional changes (ISR, NTP, PC) or more complicated dynamic patterns (OCR, GCR, LPR). A further increase in oxygen concentration in the perfusion medium drove OCR, ISR, NTP, PC, and P(i) to new, higher levels. It is concluded that (31)P NMR spectroscopy can be used for the prolonged noninvasive monitoring of the bioenergetic changes of encapsulated betaTC3 cells occurring with changes in oxygen tension. The data also indicate that the oxygen-dependent states might be related to the total number of viable, metabolically active cells supported by the particular oxygen level to which the system is exposed. These findings have significant implications in developing and non-invasively monitoring a tissue-engineered bioartificial pancreas based on transformed beta cells, as well as in understanding the biochemical events pertaining to insulin secretion from betaTC3 insulinomas.


Biotechnology and Bioengineering | 1999

Development of a bioartificial pancreas: I. Long‐term propagation and basal and induced secretion from entrapped βTC3 cell cultures

Klearchos K. Papas; Robert Long; Athanassios Sambanis; Ioannis Constantinidis

Bioartificial pancreatic constructs based on immunoisolated, insulin-secreting cells have the potential for providing effective, long-term treatment of type I (insulin-dependent) diabetes. Use of insulinoma cells, which can be amplified in culture, relaxes the tissue availability limitation that exists with normal pancreatic islet transplantations. We have adopted mouse insulinoma betaTC3 cells entrapped in calcium alginate/poly-L-lysine/alginate (APA) beads as our model system for a bioartificial pancreas, and we have characterized the effects of long-term propagation and of glucose concentration step changes on the bioenergetic status and on the metabolic and secretory activities of the entrapped cells. Cell bioenergetics were evaluated nonivasively by phosphorus-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, and metabolic and secretory parameters by assaying cell culture medium. Data indicate that net cell growth occurred between days 3 and 10 of the experiment, resulting in an approximate doubling of the overall metabolic and secretory rates and of the intracellular metabolite levels. Concurrently, a reorganization of cell distribution within the beads was observed. Following this growth period, the measured metabolic and secretory parameters remained constant with time. During glucose step changes in the perfusion medium from a high concentration of 12 to 15 mM to 0 mM for 4.5 h to the same high glucose concentration, the oxygen consumption rate was not affected, whereas insulin secretion was always glucose-responsive. Intracellular nucleotide triphosphates did not change during 0 mM glucose episodes performed early in culture history, but they declined by 20% during episodes performed later in the experiment. It is concluded that the system of APA-entrapped betaTC3 cells exhibits several of the desirable characteristics of a bioartificial pancreas device, and that a correlation between ATP and the rate of insulin secretion from betaTC3 cells exists for only a domain of culture conditions. These findings have significant implications in tissue engineering a long-term functional bioartificial endocrine pancreas, in developing noninvasive methods for assessing construct function postimplantation, and in the biochemical processes associated with insulin secretion.


Biochimica et Biophysica Acta | 1996

Effects of oxygen on metabolic and secretory activities of βTC3 cells

Klearchos K. Papas; Robert Long; Ioannis Constantinidis; Athanassios Sambanis

Abstract We have investigated the rates of glucose consumption, lactate production and insulin secretion by mouse insulinoma βTC3 cells exposed to high glucose and oxygen concentrations in the range of 132 mmHg (normoxia) to 0 mmHg (anoxia). The rates of glucose consumption and lactate production, and the yield of lactate on glucose were 6.4 ± 0.2 nmol/h − 10 5 cells, 7.7 ± 0.5 nmol/h − 10 5 cells, and 1.2 ± 0.1 respectively, at oxygen concentrations between 132-25 mmHg. These values increased gradually as the oxygen concentration was reduced below 25 mmHg, reaching a maximum value of 12.8 ± 0.4, 23.8 ± 1.1, 1.9 ± 0.1 respectively, at complete anoxia. Insulin secretion remained constant at 360 ± 24 pmol/h − 10 8 cells at oxygen concentrations between 132-7 mmHg, but was inhibited at lower oxygen concentrations, dropping to 96 ± 24 pmol/h − 10 8 cells at 0 mmHg. The rate of insulin secretion in the presence of high glucose under anoxia was significantly higher than the rate of basal secretion (28.2 ± 3.0 pmol/h − 10 8 cells) at normoxia. The secretory properties of βTC3 cells at low oxygen concentrations may have implications in the development of a diffusion-based bioartificial tissue constructs for the long-term treatment of Insulin Dependent Diabetes Mellitus.


Cryobiology | 2011

CYTOTOXICITY EFFECTS OF CRYOPROTECTANTS AS SINGLE-COMPONENT AND COCKTAIL VITRIFICATION SOLUTIONS

Alison Lawson; Hajira F. Ahmad; Athanassios Sambanis

Cryoprotectant (CPA) cytotoxicity constitutes a challenge in developing cryopreservation protocols, specifically in vitrification where high CPA concentrations are necessary to achieve the ice-free, vitreous state. Few cytotoxicity studies have investigated vitrification-relevant concentrations of CPAs, and the benefits and disadvantages of cocktail solutions and of incorporating non-permeating solutes have not been fully evaluated. In this study, we address these issues by determining the cytotoxicity kinetics for dimethylsulfoxide (Me(2)SO) and 1,2-propanediol (PD) on alginate-encapsulated βTC-tet mouse insulinomas for a range of concentrations and temperatures. Cytotoxicity kinetics were also determined for two cocktails, DPS (3M Me(2)SO+3M PD+0.5M sucrose) and PEG400 (1M Me(2)SO+5M PD+0.34M poly(ethylene)glycol with M.W. of 400). PD was found to be more cytotoxic than Me(2)SO at higher concentrations and temperatures. This was reflected in PEG400 being more cytotoxic at room temperature than PEG400 at 4°C or DPS at either temperature. Addition of non-permeating solutes increased the cytotoxicity of cocktails. Furthermore, results indicate that CPA cytotoxicity may not be additive and that combining CPAs may increase cytotoxicity synergistically. Finally, when comparing cytotoxic effects towards encapsulated HepG2 and βTC-tet cells, and towards βTC-tet cells in capsules and in monolayers, CPAs appear more cytotoxic towards cells with higher metabolic activity. The incorporation of these results in the rational design of CPA addition/removal processes in vitrification is discussed.

Collaboration


Dive into the Athanassios Sambanis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheryl L. Stabler

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Indra N. Mukherjee

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hajira F. Ahmad

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shiue-Cheng Tang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying C. Song

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge