Atilla Ozgur Cakmak
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atilla Ozgur Cakmak.
Journal of Applied Physics | 2009
Atilla Ozgur Cakmak; Evrim Colak; Humeyra Caglayan; Hamza Kurt; Ekmel Ozbay
A graded index photonic crystal (GRIN PC) configuration was placed at the input side of a photonic crystal waveguide (PCW) in order to efficiently couple the light waves into the waveguide. We compared the transmission efficiencies of light in the absence and presence of the GRIN PC structure. We report a significant improvement in coupling when the GRIN PC is incorporated with the PCW. The intensity profiles were obtained by carrying out the experiments at microwave frequencies. Finite difference time domain based simulations were found to be in good agreement with our experimental results.
Applied Physics Letters | 2009
Atilla Ozgur Cakmak; Koray Aydin; Evrim Colak; Zhaofeng Li; Filiberto Bilotti; Lucio Vegni; Ekmel Ozbay
We report an enhanced transmission through a single circular subwavelength aperture that is incorporated with a split ring resonator (SRR) at the microwave regime. Transmission enhancement factors as high as 530 were observed in the experiments when the SRR was located in front of the aperture in order to efficiently couple the electric field component of the incident electromagnetic wave at SRR’s electrical resonance frequency. The experimental results were supported by numerical analyses. The physical origin of the transmission enhancement phenomenon was discussed by examining the induced surface currents on the structures.
Optics Express | 2010
Atilla Ozgur Cakmak; Evrim Colak; Andriy E. Serebryannikov; Ekmel Ozbay
Unidirectional transmission is studied theoretically and experimentally for the gratings with one-side corrugations (non-symmetric gratings), which are based on two-dimensional photonic crystals composed of alumina rods. The unidirectional transmission appears at a fixed angle of incidence as a combined effect of the peculiar dispersion features of the photonic crystal and the properly designed corrugations. It is shown that the basic unidirectional transmission characteristics, which are observed at a plane-wave illumination, are preserved at Gaussian-beam and horn antenna illuminations. The main attention is paid to the single-beam unidirectional regime, which is associated with the strong directional selectivity arising due to the first negative diffraction order. An additional degree of freedom for controlling the transmission of the electromagnetic waves is obtained by making use of the asymmetric corrugations at the photonic crystal interface.
Optics Express | 2012
Andriy E. Serebryannikov; Atilla Ozgur Cakmak; Ekmel Ozbay
We will show that broadband unidirectional optical transmission with a total transmission maximum inside the band can be obtained for linearly polarized incident waves in the nonsymmetric photonic crystal gratings made of isotropic linear materials at a fixed nonzero or zero angle of incidence. Being based on the merging of diffraction and dispersion effects, the basic physical mechanism studied exploits the transmission channels associated with higher orders, for which asymmetry in the coupling conditions at the two grating interfaces appears when spatial inversion symmetry is broken. Total transmission in one direction and zero transmission in the opposite direction can be obtained due to hybridization of Fabry-Perot type resonances with a diffraction anomaly that yields a diode-like operation regime. Single-beam deflection and two-beam splitting can be obtained, for which transmission can be (nearly) total, if the corrugated side is illuminated. In contrast to the previous studies, it is also shown that unidirectional transmission can appear only at a fixed frequency and only due to diffractions, when total transmission occurs at the noncorrugated-side illumination, being in agreement with the Lorentz Lemma.
Journal of Applied Physics | 2010
Evrim Colak; Atilla Ozgur Cakmak; Andriy E. Serebryannikov; Ekmel Ozbay
Spatial filtering is demonstrated at beam-type excitations by utilizing finite thickness slabs of two-dimensional dielectric photonic crystals (PCs) showing exotic Fabry–Perot resonances that are preserved over a wide range of variation of the incidence angle. Bandstop and dual-bandpass filtering effects are illustrated theoretically and the corresponding filters are validated in the microwave experiments by using square-lattice PCs. It is shown that the basic transmission features that were observed earlier for a plane-wave illumination are also recognizable at beam-type excitations. The proposed spatial filtering mechanism exhibits directional beaming. The desired widths and the locations of the passbands and stopbands are attainable in the angle domain with a proper choice of the operating frequency for the given excitation characteristics.
Journal of Optics | 2007
Kaan Guven; Atilla Ozgur Cakmak; M. D. Caliskan; T. F. Gundogdu; Maria Kafesaki; Costas M. Soukoulis; Ekmel Ozbay
We report an experimental and numerical analysis of a planar metamaterial designed for normal-to-plane propagation, and operating at microwave frequencies. The metamaterial consists of cutwire and wire patterns, which are arranged periodically on both sides of a dielectric layer, in the form of a bilayer. The left-handed transmission band of the metamaterial is demonstrated experimentally. The effective index of refraction retrieved from the S parameters is found to be negative within this transmission band. An independent negative refraction experiment supports the existence of the negative index of refraction for the metamaterial.
Optics Express | 2010
Damla Ates; Atilla Ozgur Cakmak; Evrim Colak; Rongkuo Zhao; Costas M. Soukoulis; Ekmel Ozbay
We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31 x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries.
Optics Express | 2014
Semih Cakmakyapan; Neval A. Cinel; Atilla Ozgur Cakmak; Ekmel Ozbay
We introduced fractal geometry to the conventional bowtie antennas. We experimentally and numerically showed that the resonance of the bowtie antennas goes to longer wavelengths, after each fractalization step, which is considered a tool to miniaturize the main bowtie structure. We also showed that the fractal geometry provides multiple hot spots on the surface, and it can be used as an efficient SERS substrate.
Optics Express | 2009
Evrim Colak; Humeyra Caglayan; Atilla Ozgur Cakmak; Alessandro Della Villa; Filippo Capolino; Ekmel Ozbay
A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.
Optics Express | 2015
Gundogdu Ft; Andriy E. Serebryannikov; Atilla Ozgur Cakmak; Ekmel Ozbay
It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 0<n<1 and n>1. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (0<n<1) can replace each other in some cases without affecting the scenario of asymmetric transmission. Moreover, the PhC prism and the solid dielectric prism can show the same scenario at n>1. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.