Atilla Yazici
Sabancı University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atilla Yazici.
Journal of Agricultural and Food Chemistry | 2010
Ismail Cakmak; M. Kalayci; Y. Kaya; Ayfer Alkan Torun; Nevzat Aydin; Yunxia Wang; Z. Arısoy; Halil Erdem; Atilla Yazici; Ozay Ozgur Gokmen; Levent Ozturk; Walter J. Horst
Zinc (Zn) deficiency associated with low dietary intake is a well-documented public health problem, resulting in serious health and socioeconomic problems. Field experiments were conducted with wheat to test the role of both soil and foliar application of ZnSO4 in Zn concentration of whole grain and grain fractions (e.g., bran, embryo and endosperm) in 3 locations. Foliar application of ZnSO4 was realized at different growth stages (e.g., stem elongation, boot, milk, dough stages) to study the effect of timing of foliar Zn application on grain Zn concentration. The rate of foliar Zn application at each growth stage was 4 kg of ZnSO4·7H2O ha(-1). Laser ablation (LA)-ICP-MS was used to follow the localization of Zn within grain. Soil Zn application at a rate of 50 kg of ZnSO4·7H2O ha(-1) was effective in increasing grain Zn concentration in the Zn-deficient location, but not in the locations without soil Zn deficiency. In all locations, foliar application of Zn significantly increased Zn concentration in whole grain and in each grain fraction, particularly in the case of high soil N fertilization. In Zn-deficient location, grain Zn concentration increased from 11 mg kg(-1) to 22 mg kg(-1) with foliar Zn application and to 27 mg kg(-1) with a combined application of ZnSO4 to soil and foliar. In locations without soil Zn deficiency, combination of high N application with two times foliar Zn application (e.g., at the booting and milk stages) increased grain Zn concentration, on average, from 28 mg kg(-1) to 58 mg kg(-1). Both ICP-OES and LA-ICP-MS data showed that the increase in Zn concentration of whole grain and grain fractions was pronounced when Zn was sprayed at the late growth stage (e.g., milk and dough). LA-ICP-MS data also indicated that Zn was transported into endosperm through the crease phloem. To our knowledge, this is the first study to show that the timing of foliar Zn application is of great importance in increasing grain Zn in wheat, especially in the endosperm part that is the predominant grain fraction consumed in many countries. Providing a large pool of Zn in vegetative tissues during the grain filling (e.g., via foliar Zn spray) is an important practice to increase grain Zn and contribute to human nutrition.
Annals of Botany | 2010
Merav Chatzav; Zvi Peleg; Levent Ozturk; Atilla Yazici; Tzion Fahima; Ismail Cakmak; Yehoshua Saranga
BACKGROUND AND AIMS Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. METHODS A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. KEY RESULTS Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. CONCLUSIONS Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.
Plant and Soil | 2011
Seher Bahar Aciksoz; Atilla Yazici; Levent Ozturk; Ismail Cakmak
Increasing iron (Fe) concentration in food crops is an important global challenge due to high incidence of Fe deficiency in human populations. Evidence is available showing that nitrogen (N) fertilization increases Fe concentration in wheat grain. This positive impact of N on grain Fe was, however, not studied under varied soil and foliar applications of Fe. Greenhouse experiments were conducted to investigate a role of soil- and foliar-applied Fe fertilizers in improving shoot and grain Fe concentration in durum wheat (Triticum durum) grown under increasing N supply as Ca-nitrate. Additionally, an effect of foliar Fe fertilizers on grain Fe was tested with and without urea in the spray solution. Application of various soil or foliar Fe fertilizers had either a little positive effect or remained ineffective on shoot or grain Fe. By contrast, at a given Fe treatment, raising N supply substantially enhanced shoot and grain concentrations of Fe and Zn. Improving N status of plants from low to sufficient resulted in a 3-fold increase in shoot Fe content (e.g., total Fe accumulated), whereas this increase was only 42% for total shoot dry weight. Inclusion of urea in foliar Fe fertilizers had a positive impact on grain Fe concentration. Nitrogen fertilization represents an important agronomic practice in increasing grain Fe. Therefore, the plant N status deserves special attention in biofortification of food crops with Fe.
New Phytologist | 2008
Levent Ozturk; Atilla Yazici; Selim Eker; Ozgur Gokmen; Volker Römheld; Ismail Cakmak
Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mm glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mm glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mm and 0.95 mm), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage.
Plant Molecular Biology Reporter | 2011
Emel Durmaz; Ceyda Coruh; Gizem Dinler; Micheal A. Grusak; Zvika Peleg; Yashua Saranga; Tzion Fahima; Atilla Yazici; Levent Ozturk; Ismail Cakmak; Hikmet Budak
Zinc deficiency is a common problem leading to severe decreases in grain yield and has detrimental effects on nutritional quality in cereals. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, exhibits a potential genetic resource for wheat improvement due to its compatibility with modern wheat. In this study, Zn deficiency response of wild progenitors and modern wheat were examined using molecular and physiological approaches with plants grown under various Zn concentrations. The results revealed wide variation in response to Zn deficiency between wild emmer accessions. Among the wild emmer accessions studied, accession MM 5/4 was found to be most tolerant and accession 19–36 was the most sensitive to Zn deficiency. To better understand Zn transport mechanisms in wild emmer wheat, we analyzed the expression patterns of a ZRT/IRT-like gene, Zrt-, Irt-like protein (ZIP)1, in the roots and shoots of several accessions that were maintained on different concentrations of Zn. Quantitative real-time polymerase chain reaction results revealed that ZIP1 transcript levels are elevated with decreasing Zn supply in all accessions. Particularly, ZIP1 transcript accumulation was lower in the roots of accession MM 5/4 while the susceptible, 19–36 accession, has elevated levels of ZIP1 transcript, revealing a Zn deficiency response for this genotype. We also identified and cloned a full-length ZIP1 transporter, named TdZIP1, and further analyzed the corresponding protein sequence for structural attributes. Under Zn deficiency, deleting the last 20 amino acids from the last transmembrane domain of TdZIP1 and tagging with GFP resulted in endoplasmic reticulum localization. Functional expression of the isolated TdZIP1 using Zn-uptake defective Saccharomyces cerevisiae strains on limiting Zn media showed that it could indeed transport Zn. However, overexpression of this transporter causes excess accumulation of Zn in the cells, thus generating a toxic environment. Overall, our results indicate the possibility of using Triticum dicoccoides for the genetic improvement of zinc deficiency tolerance in wheat.
Physiologia Plantarum | 2014
Seher Bahar Aciksoz; Levent Ozturk; Atilla Yazici; Ismail Cakmak
The role of urea in the translocation of (59) Fe from (59) FeEDTA-treated leaves was studied in durum wheat (Triticum durum) grown for 2 weeks in nutrient solution and until grain maturation in soil culture. Five-cm long tips of the first leaf of young wheat seedlings or flag leaves at the early milk stage were immersed twice daily for 10 s in (59) FeEDTA solutions containing increasing amounts of urea (0, 0.2, 0.4 and 0.8% w/v) over 5 days. In the experiment with young wheat seedlings, urea inclusion in the (59) FeEDTA solution increased significantly translocation of (59) Fe from the treated leaf into roots and the untreated part of shoots. When (59) Fe-treated leaves were induced into senescence by keeping them in the dark, there was a strong (59) Fe translocation from these leaves. Adding urea to the (59) Fe solution did not result in an additional increase in Fe translocation from the dark-induced senescent leaves. In the experiment conducted in the greenhouse in soil culture until grain maturation, translocation of (59) Fe from the flag leaves into grains was also strongly promoted by urea, whereas (59) Fe translocation from flag leaves into the untreated shoot was low and not affected by urea. In conclusion, urea contributes to transportation of the leaf-absorbed Fe into sink organs. Probably, nitrogen compounds formed after assimilation of foliar-applied urea (such as amino acids) contributed to Fe chelation and translocation to grains in wheat.
Journal of Integrative Plant Biology | 2018
Gokhan Hacisalihoglu; Amy L. Burton; Jeffery L. Gustin; Selim Eker; Safiye Asikli; Elif Hakli Heybet; Levent Ozturk; Ismail Cakmak; Atilla Yazici; Kent O. Burkey; James H. Orf; A. Mark Settles
Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non-renewable, essential macronutrient, and P deficiency limits soybean (Glycine max) yield and quality. To investigate the associations of seed traits in low- and high-P environments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybean maintains sufficient P in seeds even in low-P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in low-P environments and one significant QTL found in the optimal-P environment. Broad-sense heritability estimates were 0.78 (individual seed weight), 0.90 (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions.
Physiologia Plantarum | 2007
Assaf Distelfeld; Ismail Cakmak; Zvi Peleg; Levent Ozturk; Atilla Yazici; Hikmet Budak; Yehoshua Saranga; Tzion Fahima
Plant and Soil | 2008
Zvi Peleg; Yehoshua Saranga; Atilla Yazici; Tzion Fahima; Levent Ozturk; Ismail Cakmak
Journal of Agricultural and Food Chemistry | 2006
Selim Eker; Levent Ozturk; Atilla Yazici; Bülent E. Erenoglu; Volker Römheld; Ismail Cakmak