Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsuko Hachiya is active.

Publication


Featured researches published by Atsuko Hachiya.


Nature | 2009

Adaptation of HIV-1 to human leukocyte antigen class I

Y Kawashima; K. Pfafferott; John Frater; Philippa C. Matthews; Rebecca Payne; M. M. Addo; Hiroyuki Gatanaga; Mamoru Fujiwara; Atsuko Hachiya; Hirokazu Koizumi; Nozomi Kuse; Shinichi Oka; Anna Duda; Andrew J. Prendergast; Hayley Crawford; A Leslie; Zabrina L. Brumme; Chanson J. Brumme; Todd M. Allen; Christian Brander; Richard A. Kaslow; Jianming Tang; Eric Hunter; Susan Allen; Joseph Mulenga; S. Branch; T Roach; M. John; S. Mallal; Anthony Ogwu

The rapid and extensive spread of the human immunodeficiency virus (HIV) epidemic provides a rare opportunity to witness host–pathogen co-evolution involving humans. A focal point is the interaction between genes encoding human leukocyte antigen (HLA) and those encoding HIV proteins. HLA molecules present fragments (epitopes) of HIV proteins on the surface of infected cells to enable immune recognition and killing by CD8+ T cells; particular HLA molecules, such as HLA-B*57, HLA-B*27 and HLA-B*51, are more likely to mediate successful control of HIV infection. Mutation within these epitopes can allow viral escape from CD8+ T-cell recognition. Here we analysed viral sequences and HLA alleles from >2,800 subjects, drawn from 9 distinct study cohorts spanning 5 continents. Initial analysis of the HLA-B*51-restricted epitope, TAFTIPSI (reverse transcriptase residues 128–135), showed a strong correlation between the frequency of the escape mutation I135X and HLA-B*51 prevalence in the 9 study cohorts (P = 0.0001). Extending these analyses to incorporate other well-defined CD8+ T-cell epitopes, including those restricted by HLA-B*57 and HLA-B*27, showed that the frequency of these epitope variants (n = 14) was consistently correlated with the prevalence of the restricting HLA allele in the different cohorts (together, P < 0.0001), demonstrating strong evidence of HIV adaptation to HLA at a population level. This process of viral adaptation may dismantle the well-established HLA associations with control of HIV infection that are linked to the availability of key epitopes, and highlights the challenge for a vaccine to keep pace with the changing immunological landscape presented by HIV.


Journal of Virology | 2008

Amino Acid Mutation N348I in the Connection Subdomain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confers Multiclass Resistance to Nucleoside and Nonnucleoside Reverse Transcriptase Inhibitors

Atsuko Hachiya; Eiichi Kodama; Stefan G. Sarafianos; Matthew M. Schuckmann; Yasuko Sakagami; Masao Matsuoka; Masafumi Takiguchi; Hiroyuki Gatanaga; Shinichi Oka

ABSTRACT We identified clinical isolates with phenotypic resistance to nevirapine (NVP) in the absence of known nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations. This resistance is caused by N348I, a mutation at the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). Virologic analysis showed that N348I conferred multiclass resistance to NNRTIs (NVP and delavirdine) and to nucleoside reverse transcriptase inhibitors (zidovudine [AZT] and didanosine [ddI]). N348I impaired HIV-1 replication in a cell-type-dependent manner. Acquisition of N348I was frequently observed in AZT- and/or ddI-containing therapy (12.5%; n = 48; P < 0.0001) and was accompanied with thymidine analogue-associated mutations, e.g., T215Y (n = 5/6) and the lamivudine resistance mutation M184V (n = 1/6) in a Japanese cohort. Molecular modeling analysis shows that residue 348 is proximal to the NNRTI-binding pocket and to a flexible hinge region at the base of the p66 thumb that may be affected by the N348I mutation. Our results further highlight the role of connection subdomain residues in drug resistance.


Antimicrobial Agents and Chemotherapy | 2001

Rapid and Simple Phenotypic Assay for Drug Susceptibility of Human Immunodeficiency Virus Type 1 Using CCR5-Expressing HeLa/CD4+ Cell Clone 1-10 (MAGIC-5)

Atsuko Hachiya; Saori Aizawa-Matsuoka; Mari Tanaka; Yukiko Takahashi; Setsuko Ida; Hiroyuki Gatanaga; Yoshihiro Hirabayashi; Asato Kojima; Masashi Tatsumi; Shinichi Oka

ABSTRACT We describe a rapid and simple novel phenotypic assay for drug susceptibility of human immunodeficiency virus type-1 (HIV-1) using a CCR5-expressing HeLa/CD4+ cell clone 1-10 (MAGIC-5). MAGIC-5 cells produced large amounts of HIV-1 in culture supernatants, which enabled us to perform the phenotypic resistance assay. Determination of HIV-1 susceptibility to various protease inhibitors (PI) and nucleoside reverse transcriptase inhibitors was completed within 15 days in T-cell-tropic (X4) and macrophage-tropic (R5) viruses using fresh plasma samples containing at least 104copies/ml. The nucleotide sequence of the envelope V3 region of HIV-1 in plasma was almost identical to that of the virus isolated by MAGIC-5 cells, suggesting a lack of selection bias in our assay. The assay variability was confined to within five-fold in all drugs examined. Accordingly, we used a 10-fold increase in the 50% inhibitory concentration as the cutoff value for viral resistance in the present assay. HIV-1 resistant to lamivudine, which was not detected by conventional genotypic assays, was isolated. In HIV-1 with PI-associated primary amino acid substitutions, our assay showed that drug resistance profiles correlated well with previously reported genotypic-assay data. Furthermore, our assay provided comprehensive results regarding PI resistance in the presence of multiple mutations. The novel assay successfully quantified the level of resistance of clinical HIV-1 isolates to a battery of anti-HIV drugs, indicating its clinical usefulness, particularly in patients who failed to respond to antiretroviral chemotherapy.


Journal of Biological Chemistry | 2012

Biochemical Mechanism of HIV-1 Resistance to Rilpivirine

Kamalendra Singh; Bruno Marchand; Devendra K. Rai; Bechan Sharma; Eleftherios Michailidis; Emily M. Ryan; Kayla B. Matzek; Maxwell D. Leslie; Ariel N. Hagedorn; Zhe Li; Pieter R. Norden; Atsuko Hachiya; Michael A. Parniak; Hong Tao Xu; Mark A. Wainberg; Stefan G. Sarafianos

Background: Reverse transcriptase mutations E138K and M184I emerged most frequently in HIV-1 patients who failed rilpivirine/emtricitabine/tenofovir combination therapy. Results: M184I reduces polymerase efficiency, and E138K restores it. E138K also reduces rilpivirine binding affinity mainly by increasing its dissociation rate. Conclusion: E138K abrogates the polymerase defect of M184I and increases rilpivirine dissociation. Significance: Our results provide a biochemical explanation for the selection of E138K/M184I in patients who failed combination therapy. Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66M184I/p51WT, p66E138K/p51E138K, p66E138K/M184I/p51E138K, and p66M184I/p51E138K. Ile-184 in p66 (p66184I) decreased the catalytic efficiency of RT (kpol/Kd.dNTP), primarily through a decrease in dNTP binding (Kd.dNTP). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66184I by restoring dNTP binding. Furthermore, p51138K reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (Kd.RPV = koff.RPV/kon.RPV). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51E138K affects access to the RPV binding site by disrupting the salt bridge between p51E138 and p66K101. p66184I caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51138K restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.


Journal of Biological Chemistry | 2010

The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine

Matthew M. Schuckmann; Bruno Marchand; Atsuko Hachiya; Eiichi Kodama; Karen A. Kirby; Kamalendra Singh; Stefan G. Sarafianos

The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase (RT) confers clinically significant resistance to both nucleoside and non-nucleoside RT inhibitors (NNRTIs) by mechanisms that are not well understood. We used transient kinetics to characterize the enzymatic properties of N348I RT and determine the biochemical mechanism of resistance to the NNRTI nevirapine (NVP). We demonstrate that changes distant from the NNRTI binding pocket decrease inhibitor binding (increase Kd-NVP) by primarily decreasing the association rate of the inhibitor (kon-NVP). We characterized RTs mutated in either p66 (p66N348I/p51WT), p51 (p66WT/p51N348I), or both subunits (p66N348I/p51N348I). Mutation in either subunit caused NVP resistance during RNA-dependent and DNA-dependent DNA polymerization. Mutation in p66 alone (p66N348I/p51WT) caused NVP resistance without significantly affecting RNase H activity, whereas mutation in p51 caused NVP resistance and impaired RNase H, demonstrating that NVP resistance may occur independently from defects in RNase H function. Mutation in either subunit improved affinity for nucleic acid and enhanced processivity of DNA synthesis. Surprisingly, mutation in either subunit decreased catalytic rates (kpol) of p66N348I/p51N348I, p66N348I/p51WT, and p66WT/p51N348I without significantly affecting affinity for deoxynucleotide substrate (Kd-dNTP). Hence, in addition to providing structural integrity for the heterodimer, p51 is critical for fine tuning catalytic turnover, RNase H processing, and drug resistance. In conclusion, connection subdomain mutation N348I decreases catalytic efficiency and causes in vitro resistance to NVP by decreasing inhibitor binding.


Antiviral Research | 2009

Clinical relevance of substitutions in the connection subdomain and RNase H domain of HIV-1 reverse transcriptase from a cohort of antiretroviral treatment-naïve patients.

Atsuko Hachiya; Kazuki Shimane; Stefan G. Sarafianos; Eiichi Kodama; Yasuko Sakagami; Fujie Negishi; Hirokazu Koizumi; Hiroyuki Gatanaga; Masao Matsuoka; Masafumi Takiguchi; Shinichi Oka

Some mutations in the connection subdomain of the polymerase domain and in the RNase H domain of HIV-1 reverse transcriptase (RT) have been shown to contribute to resistance to RT inhibitors. However, the clinical relevance of such mutations is not well understood. To address this point we determined the prevalence of such mutations in a cohort of antiretroviral treatment-naïve patients (n=123) and assessed whether these substitutions are associated with drug resistance in vitro and in vivo. We report here significant differences in the prevalence of substitutions among subtype B, and non-subtype B HIV isolates. Specifically, the E312Q, G333E, G335D, V365I, A371V and A376S substitutions were present in 2-6% of subtype B, whereas the G335D and A371V substitutions were commonly observed in 69% and 75% of non-B HIV-1 isolates. We observed a significant decline in the viral loads of patients that were infected with HIV-1 carrying these substitutions and were subsequently treated with triple drug regimens, even in the case where zidovudine (AZT) was included in such regimens. We show here that, generally, such single substitutions at the connection subdomain or RNase H domain have no influence on drug susceptibility in vitro by themselves. Instead, they generally enhance AZT resistance in the presence of excision-enhancing mutations (EEMs, also known as thymidine analogue-associated mutations, TAMs). However, N348I, A376S and Q509L did confer varying amounts of nevirapine resistance by themselves, even in the absence of EEMs. Our studies indicate that several connection subdomain and RNase H domain substitutions typically act as pre-therapy polymorphisms.


Journal of Virology | 2016

Structural Insights into HIV-1 Vif-APOBEC3F Interaction

Masaaki Nakashima; Hirotaka Ode; Takashi Kawamura; Shingo Kitamura; Yuriko Naganawa; Hiroaki Awazu; Shinya Tsuzuki; Kazuhiro Matsuoka; Michiko Nemoto; Atsuko Hachiya; Wataru Sugiura; Yoshiyuki Yokomaku; Nobuhisa Watanabe; Yasumasa Iwatani

ABSTRACT The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.


Journal of Virology | 2001

Augmentation of Human Immunodeficiency Virus Type 1 Subtype E (CRF01_AE) Multiple-Drug Resistance by Insertion of a Foreign 11-Amino-Acid Fragment into the Reverse Transcriptase

Hironori Sato; Yasuhiro Tomita; Kazuyoshi Ebisawa; Atsuko Hachiya; Kayo Shibamura; Teiichiro Shiino; Rongge Yang; Masashi Tatsumi; Kazuo Gushi; Hideaki Umeyama; Shinichi Oka; Yutaka Takebe; Yoshiyuki Nagai

ABSTRACT A human immunodeficiency virus type 1 (HIV-1) subtype E (CRF01_AE) variant (99JP-NH3-II) possessing an in-frame 33-nucleotide insertion mutation in the β3-β4 loop coding region of the reverse transcriptase (RT) gene was isolated from a patient who had not responded to nucleoside analogue RT inhibitors. This virus exhibited an extremely high level of multiple nucleoside analog resistance (MNR). Neighbor-joining tree analysis of thepol sequences indicated that the 99JP-NH3-II variant had originated from the swarm of drug-sensitive predecessors in the patient. Population-based sequence analyses of 82 independently cloned RT segments from the patient suggested that the variants with the insertion, three or four 3′-azido-3′-deoxythymidine resistance mutations, and a T69I mutation in combination had strong selective advantages during chemotherapy. Consistently, in vitro mutagenesis of a drug-sensitive predecessor virus clone demonstrated that this mutation set functions cooperatively to confer a high level of MNR without deleterious effects on viral replication capability. Homology modeling of the parental RT and its MNR mutant showed that extension of the β3-β4 loop by an insertion caused reductions in the distances between the loop and the other subdomains, narrowing the template-primer binding cleft and deoxynucleoside triphosphate-binding pocket in a highly flexible manner. The origin of the insert is elusive, as every effort to find a homologue has been unsuccessful. Taken together, these data suggest that (i) HIV-1 tolerates in vivo insertions as long as 33 nucleotides into the highly conserved enzyme gene to survive multiple anti-HIV-1 inhibitors and (ii) the insertion mutation augments multiple-drug resistance, possibly by reducing the biochemical inaccuracy of substrate-enzyme interactions in the active center.


The International Journal of Biochemistry & Cell Biology | 2012

Antiviral therapies: focus on Hepatitis B reverse transcriptase

Eleftherios Michailidis; Karen A. Kirby; Atsuko Hachiya; Wangdon Yoo; Sun Pyo Hong; Soo-Ok Kim; William R. Folk; Stefan G. Sarafianos

Hepatitis B virus (HBV) is the etiologic agent of mankinds most serious liver disease. While the availability of a vaccine has reduced the number of new HBV infections, the vaccine does not benefit the approximately 350 million people already chronically infected by the virus. Most of the drugs approved by the FDA for the treatment of hepatitis B target the reverse transcriptase (RT or P gene product) and are nucleoside RT inhibitors (NRTIs) that suppress viral replication. However, prolonged monotherapies directed against a single target result in the emergence of viral resistance. HBV genotypic differences affect NRTI resistance, and because the reading frames of the S (surface antigen) and P genes partially overlap, genomic differences that affect the surface of the virus may also alter the viral polymerase sequence, function and drug susceptibility. The scope of this review is to assess the effects of HBV genotypic variation on the development of drug resistance to NRTIs. Some RT residues that vary among different genotypes are in the vicinity of residues that mutate and give rise to NRTI resistance. Interactions between these amino acids can help explain the effect of HBV genotype on the development of NRTI resistance during antiviral therapies, and might help in the design of improved therapeutic strategies.


Cellular and Molecular Biology | 2012

Preparation of biologically active single-chain variable antibody fragments that target the HIV-1 gp120 V3 loop.

Yee Tsuey Ong; Karen A. Kirby; Atsuko Hachiya; L. A. Chiang; Bruno Marchand; Kazuhisa Yoshimura; Toshio Murakami; Kamlendra Singh; Shuzo Matsushita; Stefan G. Sarafianos

KD-247 is a humanized monoclonal antibody that targets the third hypervariable (V3) loop of gp120. It can efficiently neutralize a broad panel of clade B, but not non-clade B, HIV-1 isolates. To overcome this limitation, we are seeking to prepare genetically-engineered single-chain variable fragments (scFvs) of KD-247 that will have broader neutralizing activity against both clade B and non-clade B HIV-1 isolates. Initial attempts of optimizing the expression of KD-247 scFv have resulted in the formation of insoluble protein. Therefore, we have established purification protocols to recover, purify, and refold the KD-247 scFv from inclusion bodies. The protocol involved step-wise refolding of denatured scFv by dilution, dialysis, and on-column nickel-affinity purification. Monomeric scFv was further purified by size-exclusion chromatography. Using far UV circular dichroism (CD) spectroscopy we confirmed the expected beta-sheet profile of the refolded KD-247 scFv. Importantly, the refolded KD-247 scFv showed neutralizing activity against replication-competent HIV-1 BaL and JR-FL Env pseudotyped HIV-1, at potency comparable to that of the native full-size KD-247 antibody. Ongoing studies focus on the application of this system in generating KD-247 scFv variants with the ability to neutralize clade B and non-clade B HIV-1 isolates.

Collaboration


Dive into the Atsuko Hachiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirotaka Ode

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge