Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsuko Niimi is active.

Publication


Featured researches published by Atsuko Niimi.


Molecular Cell | 2010

Three DNA Polymerases, Recruited by Different Mechanisms, Carry Out NER Repair Synthesis in Human Cells

Tomoo Ogi; Siripan Limsirichaikul; René M. Overmeer; Marcel Volker; Katsuya Takenaka; Ross Cloney; Yuka Nakazawa; Atsuko Niimi; Yoshio Miki; Nicolaas G. J. Jaspers; Leon H.F. Mullenders; Shunichi Yamashita; Maria Fousteri; Alan R. Lehmann

Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells

Atsuko Niimi; Stephanie Brown; Simone Sabbioneda; Patricia Kannouche; Andrew M. Scott; Akira Yasui; Catherine M. Green; Alan R. Lehmann

After exposure to DNA-damaging agents that block the progress of the replication fork, monoubiquitination of proliferating cell nuclear antigen (PCNA) mediates the switch from replicative to translesion synthesis DNA polymerases. We show that in human cells, PCNA is monoubiquitinated in response to methyl methanesulfonate and mitomycin C, as well as UV light, albeit with different kinetics, but not in response to bleomycin or camptothecin. Cyclobutane pyrimidine dimers are responsible for most of the PCNA ubiquitination events after UV-irradiation. Failure to ubiquitinate PCNA results in substantial sensitivity to UV and methyl methanesulfonate, but not to camptothecin or bleomycin. PCNA ubiquitination depends on Replication Protein A (RPA), but is independent of ATR-mediated checkpoint activation. After UV-irradiation, there is a temporal correlation between the disappearance of the deubiquitinating enzyme USP1 and the presence of PCNA ubiquitination, but this correlation was not found after chemical mutagen treatment. By using cells expressing photolyases, we are able to remove the UV lesions, and we show that PCNA ubiquitination persists for many hours after the damage has been removed. We present a model of translesion synthesis behind the replication fork to explain the persistence of ubiquitinated PCNA.


Molecular Cell | 2010

Regulation of translesion synthesis DNA polymerase η by monoubiquitination

Marzena Bienko; Catherine M. Green; Simone Sabbioneda; Nicola Crosetto; Ivan Matic; Richard G. Hibbert; Tihana Begovic; Atsuko Niimi; Matthias Mann; Alan R. Lehmann; Ivan Dikic

DNA polymerase eta is a Y family polymerase involved in translesion synthesis (TLS). Its action is initiated by simultaneous interaction between the PIP box in pol eta and PCNA and between the UBZ in pol eta and monoubiquitin attached to PCNA. Whereas monoubiquitination of PCNA is required for its interaction with pol eta during TLS, we now show that monoubiquitination of pol eta inhibits this interaction, preventing its functions in undamaged cells. Identification of monoubiquitination sites within pol eta nuclear localization signal (NLS) led to the discovery that pol eta NLS directly contacts PCNA, forming an extended pol eta-PCNA interaction surface. We name this the PCNA-interacting region (PIR) and show that its monoubiquitination is downregulated by various DNA-damaging agents. We propose that this mechanism ensures optimal availability of nonubiquitinated, TLS-competent pol eta after DNA damage. Our work shows how monoubiquitination can either positively or negatively regulate the assembly of a protein complex, depending on which substrates are targeted by ubiquitin.


Cancer Research | 2007

Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

Yasuhiro Murakawa; Eiichiro Sonoda; Louise J. Barber; Weihua Zeng; Kyoko Yokomori; Hiroshi Kimura; Atsuko Niimi; Alan R. Lehmann; Guang Yu Zhao; Helfrid Hochegger; Simon J. Boulton; Shunichi Takeda

Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.


Molecular and Cellular Biology | 2004

Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

Atsuko Niimi; Siripan Limsirichaikul; Shonen Yoshida; Shigenori Iwai; Chikahide Masutani; Fumio Hanaoka; Eric T. Kool; Yukihiro Nishiyama; Motoshi Suzuki

ABSTRACT We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.


Nucleic Acids Research | 2012

A role for chromatin remodellers in replication of damaged DNA

Atsuko Niimi; Anna L. Chambers; Jessica A. Downs; Alan R. Lehmann

In eukaryotic cells, replication past damaged sites in DNA is regulated by the ubiquitination of proliferating cell nuclear antigen (PCNA). Little is known about how this process is affected by chromatin structure. There are two isoforms of the Remodels the Structure of Chromatin (RSC) remodelling complex in yeast. We show that deletion of RSC2 results in a dramatic reduction in the level of PCNA ubiquitination after DNA-damaging treatments, whereas no such effect was observed after deletion of RSC1. Similarly, depletion of the BAF180 component of the corresponding PBAF (Polybromo BRG1 (Brahma-Related Gene 1) Associated Factor) complex in human cells led to a similar reduction in PCNA ubiquitination. Remarkably, we found that depletion of BAF180 resulted after UV-irradiation, in a reduction not only of ubiquitinated PCNA but also of chromatin-associated unmodified PCNA and Rad18 (the E3 ligase that ubiquitinates PCNA). This was accompanied by a modest decrease in fork progression. We propose a model to account for these findings that postulates an involvement of PBAF in repriming of replication downstream from replication forks blocked at sites of DNA damage. In support of this model, chromatin immunoprecipitation data show that the RSC complex in yeast is present in the vicinity of the replication forks, and by extrapolation, this is also likely to be the case for the PBAF complex in human cells.


Cell Cycle | 2009

Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork

Stephanie Brown; Atsuko Niimi; Alan R. Lehmann

Following exposure of human cells to DNA damaging agents that block the progress of the replication fork, mono-ubiquitination of PCNA mediates the switch from replicative DNA polymerases to polymerases specialised for translesion synthesis. We have shown that this modification of PCNA is necessary for the survival of cells after UV-irradiation and methyl methanesulfonate, that it is independent of cell cycle checkpoint activation, and that it persists after UV damage has been removed. In this Extra-view, we compare the regulation and biological significance of PCNA ubiquitination following treatments with UV light and the replication inhibitor hydroxyurea. We show that ubiquitination persists after removal of the replication block in both cases. With UV however, the persistence of ubiquitinated PCNA correlates with disappearance of the PCNA deubiquitinating enzyme USP1, whereas this is not the case for HU. Prevention of PCNA ubiquitination sensitises the cells to killing by both UV and HU.


Nature Communications | 2017

DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells

Hiro Sato; Atsuko Niimi; Takaaki Yasuhara; Tiara Bunga Mayang Permata; Yoshihiko Hagiwara; Mayu Isono; Endang Nuryadi; Ryota Sekine; Takahiro Oike; Sangeeta Kakoti; Yuya Yoshimoto; Kathryn D. Held; Yoshiyuki Suzuki; Koji Kono; Kiyoshi Miyagawa; Takashi Nakano; Atsushi Shibata

Accumulating evidence suggests that exogenous cellular stress induces PD-L1 upregulation in cancer. A DNA double-strand break (DSB) is the most critical type of genotoxic stress, but the involvement of DSB repair in PD-L1 expression has not been investigated. Here we show that PD-L1 expression in cancer cells is upregulated in response to DSBs. This upregulation requires ATM/ATR/Chk1 kinases. Using an siRNA library targeting DSB repair genes, we discover that BRCA2 depletion enhances Chk1-dependent PD-L1 upregulation after X-rays or PARP inhibition. In addition, we show that Ku70/80 depletion substantially enhances PD-L1 upregulation after X-rays. The upregulation by Ku80 depletion requires Chk1 activation following DNA end-resection by Exonuclease 1. DSBs activate STAT1 and STAT3 signalling, and IRF1 is required for DSB-dependent PD-L1 upregulation. Thus, our findings reveal the involvement of DSB repair in PD-L1 expression and provide mechanistic insight into how PD-L1 expression is regulated after DSBs.PD-L1 is upregulated in many cancers due to exogenous cellular stress. Here the authors show that PD-L1 is upregulated in response to DNA double strand breaks via STAT and IRF1 signalling.


DNA Repair | 2010

Functions of base selection step in human DNA polymerase α

Shigeru Tanaka; Ke Cao; Atsuko Niimi; Siripan Limsirichaikul; Huang Qin Miao; Noriko Nakamura; Takashi Murate; Yoshinori Hasegawa; Takashi Takahashi; Motoshi Suzuki

Recent studies have revealed that the base selection step of DNA polymerases (pol) plays a role in prevention of DNA replication errors. We investigated whether base selection is required for the DNA replication fidelity of pol alpha and genomic stability in human cells. We introduced an Leu864 to Phe substitution (L864F) into human pol alpha and performed an in vitro LacZ alpha forward mutation assay. Our results showed that the overall mutation rate was increased by 180-fold as compared to that of the wild-type. Furthermore, steady state kinetics analyses consistently showed that L864F pol alpha had a decreased discrimination ability between correct and incorrect nucleotide incorporation, as well as between matched and mismatched primer termini. L864F pol alpha also exhibited increased translesion activity over the abasic, etheno-A, O(4)-methyl-T, and O(6)-methyl-G sites. In addition, our steady state kinetics analyses supported the finding of increased translesion activity of L864F pol alpha over O(6)-methyl-G. We also established stable clones transfected with pola1L864F utilizing the human cancer cell line HCT116. Using the HPRT gene as a reporter, the spontaneous mutation rate of pola1L864F cells was determined to be 2.4-fold greater than that of wild-type cells. Mutation assays were also carried out using cells transiently transfected with the wild-type or pola1L864F, and increased mutant frequencies were observed in pola1L864F cells under both spontaneous and methyl methanesulfonate-induced conditions. Together, our results indicate that the base selection step in human pol alpha functions to prevent DNA replication errors and maintain genomic integrity in HCT116 cells.


Journal of Biochemistry | 2009

PCNA Mono-Ubiquitination and Activation of Translesion DNA Polymerases by DNA Polymerase α

Motoshi Suzuki; Atsuko Niimi; Siripan Limsirichaikul; Shuta Tomida; Qin Miao Huang; Shunji Izuta; Jiro Usukura; Yasutomo Itoh; Takashi Hishida; Tomohiro Akashi; Yoshiyuki Nakagawa; Akihiko Kikuchi; Youri I. Pavlov; Takashi Murate; Takashi Takahashi

Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.

Collaboration


Dive into the Atsuko Niimi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge