Atsuko Nitta
Apache Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atsuko Nitta.
The Astronomical Journal | 2006
James E. Gunn; Walter A. Siegmund; Edward J. Mannery; Russell Owen; Charles L. Hull; R. French Leger; Larry N. Carey; Gillian R. Knapp; Donald G. York; William N. Boroski; Stephen M. Kent; Robert H. Lupton; Constance M. Rockosi; Michael L. Evans; Patrick Waddell; John Anderson; James Annis; John C. Barentine; Larry M. Bartoszek; Steven Bastian; Stephen B. Bracker; Howard J. Brewington; Charles Briegel; J. Brinkmann; Yorke J. Brown; Michael A. Carr; Paul C. Czarapata; Craig Drennan; Thomas W. Dombeck; Glenn R. Federwitz
We describe the design, construction, and performance of the Sloan Digital Sky Survey telescope located at Apache Point Observatory. The telescope is a modified two-corrector Ritchey-Chretien design with a 2.5 m, f/2.25 primary, a 1.08 m secondary, a Gascoigne astigmatism corrector, and one of a pair of interchangeable highly aspheric correctors near the focal plane, one for imaging and the other for spectroscopy. The final focal ratio is f/5. The telescope is instrumented by a wide-area, multiband CCD camera and a pair of fiber-fed double spectrographs. Novel features of the telescope include the following: (1) A 3° diameter (0.65 m) focal plane that has excellent image quality and small geometric distortions over a wide wavelength range (3000-10,600 A) in the imaging mode, and good image quality combined with very small lateral and longitudinal color errors in the spectroscopic mode. The unusual requirement of very low distortion is set by the demands of time-delay-and-integrate (TDI) imaging. (2) Very high precision motion to support open-loop TDI observations. (3) A unique wind baffle/enclosure construction to maximize image quality and minimize construction costs. The telescope had first light in 1998 May and began regular survey operations in 2000.
The Astrophysical Journal | 2008
Mario Juric; Željko Ivezić; Alyson M. Brooks; Robert H. Lupton; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Nicholas A. Bond; Branimir Sesar; Constance M. Rockosi; Gillian R. Knapp; James E. Gunn; T. Sumi; Donald P. Schneider; John C. Barentine; Howard J. Brewington; J. Brinkmann; Masataka Fukugita; Michael Harvanek; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Atsuko Nitta; Stephanie A. Snedden; Donald G. York
Using the photometric parallax method we estimate the distances to ~48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 20 kpc and cover 6500 deg2 of sky, mostly at high Galactic latitudes (|b| > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the solar neighborhood (D < 2 kpc) is well fit by two exponential disks (the thin and thick disk) with scale heights and lengths, bias corrected for an assumed 35% binary fraction, of H1 = 300 pc and L1 = 2600 pc, and H2 = 900 pc and L2 = 3600 pc, and local thick-to-thin disk density normalization ρthick(R☉)/ρthin(R☉) = 12% . We use the stars near main-sequence turnoff to measure the shape of the Galactic halo. We find a strong preference for oblate halo models, with best-fit axis ratio c/a = 0.64, ρH ∝ r−2.8 power-law profile, and the local halo-to-thin disk normalization of 0.5%. Based on a series of Monte Carlo simulations, we estimate the errors of derived model parameters not to be larger than ~20% for the disk scales and ~10% for the density normalization, with largest contributions to error coming from the uncertainty in calibration of the photometric parallax relation and poorly constrained binary fraction. While generally consistent with the above model, the measured density distribution shows a number of statistically significant localized deviations. In addition to known features, such as the Monoceros stream, we detect two overdensities in the thick disk region at cylindrical galactocentric radii and heights (R,Z) ~ (6.5,1.5) kpc and (R,Z) ~ (9.5,0.8) kpc and a remarkable density enhancement in the halo covering over 1000 deg2 of sky toward the constellation of Virgo, at distances of ~6-20 kpc. Compared to counts in a region symmetric with respect to the l = 0° line and with the same Galactic latitude, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. The u − g color distribution of stars associated with it implies metallicity lower than that of thick disk stars and consistent with the halo metallicity distribution. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ~50 pc in the disk to ~1-2 kpc in the halo.
The Astrophysical Journal | 2007
Vasily Belokurov; Daniel B. Zucker; N. W. Evans; Jan Kleyna; S. E. Koposov; Simon T. Hodgkin; M. J. Irwin; G. Gilmore; M. I. Wilkinson; M. Fellhauer; D. M. Bramich; Paul C. Hewett; S. Vidrih; J. T. A. de Jong; J. A. Smith; H.-W. Rix; Eric F. Bell; R. F. G. Wyse; Heidi Jo Newberg; P. A. Mayeur; Brian Yanny; Constance M. Rockosi; Oleg Y. Gnedin; Donald P. Schneider; Timothy C. Beers; John C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; Scott J. Kleinman
We present five new satellites of the Milky Way discovered in Sloan Digital Sky Survey (SDSS) imaging data, four of which were followed-up with either the Subaru or the Isaac Newton Telescopes. They include four probable new dwarf galaxies--one each in the constellations of Coma Berenices, Canes Venatici, Leo and Hercules--together with one unusually extended globular cluster, Segue 1. We provide distances, absolute magnitudes, half-light radii and color-magnitude diagrams for all five satellites. The morphological features of the color-magnitude diagrams are generally well described by the ridge line of the old, metal-poor globular cluster M92. In the last two years, a total of ten new Milky Way satellites with effective surface brightness {mu}{sub v} {approx}> 28 mag arcsec{sup -2} have been discovered in SDSS data. They are less luminous, more irregular and appear to be more metal-poor than the previously-known nine Milky Way dwarf spheroidals. The relationship between these objects and other populations is discussed. We note that there is a paucity of objects with half-light radii between {approx} 40 pc and {approx} 100 pc. We conjecture that this may represent the division between star clusters and dwarf galaxies.
The Astronomical Journal | 2006
Gordon T. Richards; Michael A. Strauss; Xiaohui Fan; Patrick B. Hall; Sebastian Jester; Donald P. Schneider; Daniel E. Vanden Berk; Chris Stoughton; Scott F. Anderson; Robert J. Brunner; Jim Gray; James E. Gunn; Željko Ivezić; Margaret K. Kirkland; Gillian R. Knapp; Jon Loveday; Avery Meiksin; Adrian Pope; Alexander S. Szalay; Anirudda R. Thakar; Brian Yanny; Donald G. York; J. C. Barentine; Howard J. Brewington; J. Brinkmann; Masataka Fukugita; Michael Harvanek; Stephen M. Kent; S. J. Kleinman; Jurek Krzesinski
We determine the number counts and z = 0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15,343 quasars within an effective area of 1622 deg2 that was derived from a parent sample of 46,420 spectroscopically confirmed broad-line quasars in the 5282 deg2 of imaging data from SDSS Data Release 3. The sample extends from i = 15 to 19.1 at z 3 and to i = 20.2 for z 3. The number counts and luminosity function agree well with the results of the Two Degree Field QSO Redshift Survey (2QZ) at redshifts and luminosities at which the SDSS and 2QZ quasar samples overlap, but the SDSS data probe to much higher redshifts than does the 2QZ sample. The number density of luminous quasars peaks between redshifts 2 and 3, although uncertainties in the selection function in this range do not allow us to determine the peak redshift more precisely. Our best-fit model has a flatter bright-end slope at high redshift than at low redshift. For z < 2.4 the data are best fit by a redshift-independent slope of ? = -3.1 [?(L) ? L?]. Above z = 2.4 the slope flattens with redshift to ? -2.37 at z = 5. This slope change, which is significant at the 5 ? level, must be accounted for in models of the evolution of accretion onto supermassive black holes.
The Astrophysical Journal | 2007
Benjamin P. Koester; Timothy A. McKay; James Annis; Risa H. Wechsler; August E. Evrard; L. E. Bleem; M. R. Becker; David E. Johnston; E. Sheldon; Robert C. Nichol; Christopher J. Miller; Ryan Scranton; Neta A. Bahcall; John C. Barentine; Howard J. Brewington; Jonathan Brinkmann; Michael Harvanek; Scott J. Kleinman; Jurek Krzesinski; Daniel C. Long; Atsuko Nitta; Donald P. Schneider; S. Sneddin; W. Voges; Donald G. York
We present a catalog of galaxy clusters selected using the maxBCG red-sequence method from Sloan Digital Sky Survey photometric data. This catalog includes 13,823 clusters with velocity dispersions greater than 400 km s-1 and is the largest galaxy cluster catalog assembled to date. They are selected in an approximately volume-limited way from a 0.5 Gpc3 region covering 7500 deg2 of sky between redshifts 0.1 and 0.3. Each cluster contains between 10 and 190 E/S0 ridgeline galaxies brighter than 0.4L* within a scaled radius R200. The tight relation between ridgeline color and redshift provides an accurate photometric redshift estimate for every cluster. Photometric redshift errors are shown by comparison to spectroscopic redshifts to be small (Δ ≃ 0:01), essentially independent of redshift, and well determined throughout the redshift range. Runs of maxBCG on realistic mock catalogs suggest that the sample is more than 90% pure and more than 85% complete for clusters with masses ≥ 1 x 1014 M⊙. Spectroscopic measurements of cluster members are used to examine line-of-sight projection as a contaminant in the identification of brightest cluster galaxies and cluster member galaxies. Spectroscopic data are also used to demonstrate the correlation between optical richness and velocity dispersion. Comparison to the combined NORAS and REFLEX X-rayYselected cluster catalogs shows that X-rayYluminous clusters are found among the optically richer maxBCG clusters. This paper is the first in a series that will consider the properties of these clusters, their galaxy populations, and their implications for cosmology.
The Astrophysical Journal | 2008
Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier
In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure
The Astronomical Journal | 2004
Xiaohui Fan; Michael A. Strauss; Gordon T. Richards; Joseph F. Hennawi; Robert H. Becker; Richard L. White; Aleksandar M. Diamond-Stanic; J. L. Donley; Linhua Jiang; J. Serena Kim; Marianne Vestergaard; Jason Young; James E. Gunn; Robert H. Lupton; Gillian R. Knapp; Donald P. Schneider; W. N. Brandt; Neta A. Bahcall; John C. Barentine; J. Brinkmann; Howard J. Brewington; Masataka Fukugita; Michael Harvanek; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Atsuko Nitta; Stephanie A. Snedden; W. Voges
The authors present the discovery of seven quasars at z > 5.7, selected from {approx} 2000 deg{sup 2} of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two have larger photometric errors and are not part of the complete sample. One of the new quasars, SDSS J1335+3533 (z = 5.93), exhibits no emission lines; the 3-{sigma} limit on the rest-frame equivalent width of Ly{alpha}+NV line is 5 {angstrom}. It is the highest redshift lineless quasar known, and could be a gravitational lensed galaxy, a BL Lac object or a new type of quasar. Two new z > 6 quasars, SDSS 1250+3130 (z = 6.13) and SDSS J1137+3549 (z = 6.01), show deep Gunn-Peterson troughs in Ly{alpha}. These troughs are narrower than those observed among quasars at z > 6.2 and do not have complete Ly{beta} absorption.
The Astrophysical Journal | 2005
Beth Willman; Julianne J. Dalcanton; David Martinez-Delgado; Andrew A. West; Michael R. Blanton; David W. Hogg; John C. Barentine; Howard J. Brewington; Michael Harvanek; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Atsuko Nitta; Stephanie A. Snedden
In this Letter, we report the discovery of a new dwarf satellite to the Milky Way, located at (α2000, δ2000) = (15872, 5192) in the constellation of Ursa Major. This object was detected as an overdensity of red, resolved stars in Sloan Digital Sky Survey data. The color-magnitude diagram of the Ursa Major dwarf looks remarkably similar to that of Sextans, the lowest surface brightness Milky Way companion known, but with approximately an order of magnitude fewer stars. Deeper follow-up imaging confirms that this object has an old and metal-poor stellar population and is ~100 kpc away. We roughly estimate MV = -6.75 and r1/2 = 250 pc for this dwarf. Its luminosity is several times fainter than the faintest known Milky Way dwarf. However, its physical size is typical for dwarf spheroidal galaxies. Even though its absolute magnitude and size are presently quite uncertain, Ursa Major is likely the lowest luminosity and lowest surface brightness galaxy yet known.
The Astrophysical Journal | 2006
Vasily Belokurov; Daniel B. Zucker; N. W. Evans; M. I. Wilkinson; M. J. Irwin; Simon T. Hodgkin; D. M. Bramich; J. Irwin; G. Gilmore; Beth Willman; S. Vidrih; Heidi Jo Newberg; Rosemary F. G. Wyse; M. Fellhauer; Paul C. Hewett; Nathan Cole; Eric F. Bell; Timothy C. Beers; Constance M. Rockosi; Brian Yanny; Eva K. Grebel; Donald P. Schneider; Robert H. Lupton; John C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; S. J. Kleinman; Jurek Krzesinski; Daniel C. Long
We announce the discovery of a new satellite of the Milky Way in the constellation of Bootes at a distance of ~60 kpc. It was found in a systematic search for stellar overdensities in the north Galactic cap using Sloan Digital Sky Survey Data Release 5. The color-magnitude diagram shows a well-defined turnoff, red giant branch, and extended horizontal branch. Its absolute magnitude is MV ~ -5.8 mag, which makes it one of the faintest galaxies known. The half-light radius is ~220 pc. The isodensity contours are elongated and have an irregular shape, suggesting that Boo may be a disrupted dwarf spheroidal galaxy.
The Astronomical Journal | 2008
Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi
The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.