Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsuko Yamashita is active.

Publication


Featured researches published by Atsuko Yamashita.


Invertebrate Neuroscience | 2008

Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin.

Makoto Ihara; Toshihide Okajima; Atsuko Yamashita; Takuma Oda; Koichi Hirata; Hisashi Nishiwaki; Takako Morimoto; Miki Akamatsu; Yuji Ashikawa; Shun'ichi Kuroda; Ryosuke Mega; Seiki Kuramitsu; David B. Sattelle; Kazuhiko Matsuda

Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.


Molecular Pharmacology | 2014

Studies on an Acetylcholine Binding Protein Identify a Basic Residue in Loop G on the β1 Strand as a New Structural Determinant of Neonicotinoid Actions

Makoto Ihara; Toshihide Okajima; Atsuko Yamashita; Takuma Oda; Takuya Asano; Mikana Matsui; David B. Sattelle; Kazuhiko Matsuda

Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs). Their widespread use and possible risks to pollinators make it extremely urgent to understand the mechanisms underlying their actions on insect nAChRs. We therefore elucidated X-ray crystal structures of the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) and its Gln55Arg mutant, more closely resembling insect nAChRs, in complex with a nitromethylene imidacloprid analog (CH-IMI) and desnitro-imidacloprid metabolite (DN-IMI) as well as commercial neonicotinoids, imidacloprid, clothianidin, and thiacloprid. Unlike imidacloprid, clothianidin, and CH-IMI, thiacloprid did not stack with Tyr185 in the wild-type Ls-AChBP, but did in the Gln55Arg mutant, interacting electrostatically with Arg55. In contrast, DN-IMI lacking the NO2 group was directed away from Lys34 and Arg55 to form hydrogen bonds with Tyr89 in loop A and the main chain carbonyl of Trp143 in loop B. Unexpectedly, we found that several neonicotinoids interacted with Lys34 in loop G on the β1 strand in the crystal structure of the Gln55Arg mutant. Basic residues introduced into the α7 nAChR at positions equivalent to AChBP Lys34 and Arg55 enhanced agonist actions of neonicotinoids, while reducing the actions of acetylcholine, (–)-nicotine, and DN-IMI. Thus, not only the basic residues in loop D, but also those in loop G determine the actions of neonicotinoids. These novel findings provide new insights into the modes of action of neonicotinoids and emerging derivatives.


Protein Science | 2011

GFP-based evaluation system of recombinant expression through the secretory pathway in insect cells and its application to the extracellular domains of class C GPCRs

Yuji Ashikawa; Makoto Ihara; Noriko Matsuura; Yuko Fukunaga; Yuko Kusakabe; Atsuko Yamashita

Applications of the GFP‐fusion technique have greatly facilitated evaluations of the amounts and qualities of sample proteins used for structural analyses. In this study, we applied the GFP‐based sample evaluation to secreted protein expression by insect cells. We verified that a GFP variant, GFPuv, retains proper folding and monodispersity within all expression spaces in Sf9 cells, such as the cytosol, organelles, and even the extracellular space after secretion, and thus can serve as a proper folding reporter for recombinant proteins. We then applied the GFPuv‐based system to the extracellular domains of class C G‐protein coupled receptors (GPCRs) and examined their localization, folding, and oligomerization upon insect cell expression. The extracellular domain of metabotropic glutamate receptor 1 (mGluR1) exhibited good secreted expression by Sf9 cells, and the secreted proteins formed dimer with a monodisperse hydrodynamic state favorable for crystallization, consistent with the results from previous successful structural analyses. In contrast, the extracellular domains of sweet/umami taste receptors (T1R) almost completely remained in the cell. Notably, the T1R and mGluR1 subfractions that remained in the cellular space showed polydisperse hydrodynamic states with large aggregated fractions, without forming dimers. These results indicated that the proper folding and oligomerization of the extracellular domains of the class C GPCR are achieved through the secretory pathway.


Journal of Biological Chemistry | 2013

Molecular bases of multimodal regulation of a fungal transient receptor potential (TRP) channel

Makoto Ihara; Shin Hamamoto; Yohei Miyanoiri; Mitsuhiro Takeda; Masatsune Kainosho; Nobuyuki Uozumi; Atsuko Yamashita

Background: Multimodality of TRP channels underlies their diverse physiological functions. Results: We identified a fungal multimodal TRP channel whose cytosolic domain (CTD) mediates various channel regulation. Conclusion: CTD has an oligomerization module critical for osmoreception, yet its flexible structure allows dynamic regulations with other functional modalities. Significance: This work proposes structural and biophysical principles for multimodality of a TRP channel family member. Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca2+ elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca(2+) elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.


PLOS ONE | 2014

Distinct Human and Mouse Membrane Trafficking Systems for Sweet Taste Receptors T1r2 and T1r3

Madoka Shimizu; Masao Goto; Takayuki Kawai; Atsuko Yamashita; Yuko Kusakabe

The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.


Analytical Biochemistry | 2011

High-resolution Native-PAGE for membrane proteins capable of fluorescence detection and hydrodynamic state evaluation

Makoto Ihara; Noriko Matsuura; Atsuko Yamashita

An improved native polyacrylamide gel electrophoresis (PAGE) method capable of evaluating the hydrodynamic states of membrane proteins and allowing in-gel fluorescence detection was established. In this method, bis(alkyl) sulfosuccinate is used to provide negative charges for detergent-solubilized membrane proteins to facilitate proper electrophoretic migration without disturbing their native hydrodynamic states. The method achieved high-resolution electrophoretic separation, in good agreement with the elution profiles obtained by size exclusion chromatography. The applicability of in-gel fluorescence detection for tagged green fluorescent protein (GFP) facilitates the analysis of samples without any purification. This method might serve as a general analytical technique for assessing the folding, oligomerization, and protein complex formation of membrane proteins.


Scientific Reports | 2016

Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains

Eriko Nango; Shuji Akiyama; Saori Maki-Yonekura; Yuji Ashikawa; Yuko Kusakabe; Elena Krayukhina; Takahiro Maruno; Susumu Uchiyama; Nipawan Nuemket; Koji Yonekura; Madoka Shimizu; Nanako Atsumi; Norihisa Yasui; Takaaki Hikima; Masaki Yamamoto; Yuji Kobayashi; Atsuko Yamashita

Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states.


Chemical Senses | 2018

Structure–Function Relationships of Olfactory and Taste Receptors

Maik Behrens; Loïc Briand; Claire A. de March; Hiroaki Matsunami; Atsuko Yamashita; Wolfgang Meyerhof; Simone Weyand

The field of chemical senses has made major progress in understanding the cellular mechanisms of olfaction and taste in the past 2 decades. However, the molecular understanding of odor and taste recognition is still lagging far behind and will require solving multiple structures of the relevant full-length receptors in complex with native ligands to achieve this goal. However, the development of multiple complimentary strategies for the structure determination of G protein-coupled receptors (GPCRs) makes this goal realistic. The common conundrum of how multi-specific receptors that recognize a large number of different ligands results in a sensory perception in the brain will only be fully understood by a combination of high-resolution receptor structures and functional studies. This review discusses the first steps on this pathway, including biochemical and physiological assays, forward genetics approaches, molecular modeling, and the first steps towards the structural biology of olfactory and taste receptors.


Protein Science | 2017

A large-scale expression strategy for multimeric extracellular protein complexes using Drosophila S2 cells and its application to the recombinant expression of heterodimeric ligand-binding domains of taste receptor

Atsuko Yamashita; Eriko Nango; Yuji Ashikawa

Many of the extracellular proteins or extracellular domains of plasma membrane proteins exist or function as homo‐ or heteromeric multimer protein complexes. Successful recombinant production of such proteins is often achieved by co‐expression of the components using eukaryotic cells via the secretory pathway. Here we report a strategy addressing large‐scale expression of hetero‐multimeric extracellular domains of plasma membrane proteins and its application to the extracellular domains of a taste receptor. The target receptor consists of a heterodimer of T1r2 and T1r3 proteins, and their extracellular ligand binding domains (LBDs) are responsible for the perception of major taste substances. However, despite the functional importance, recombinant production of the heterodimeric proteins has so far been unsuccessful. We achieved the successful preparation of the heterodimeric LBD by use of Drosophila S2 cells, which have a high secretory capacity, and by the establishment of a stable high‐expression clone producing both subunits at a comparable level. The method overcame the problems encountered in the conventional transient expression of the receptor protein in insect cells using baculovirus or vector lipofection, which failed in the proper heterodimer production because of the biased expression of T1r3LBD over T1r2LBD. The large‐scale expression methodology reported here may serve as one of the considerable strategies for the preparation of multimeric extracellular protein complexes.


Protein Science | 2014

General flexible nature of the cytosolic regions of fungal transient receptor potential (TRP) channels, revealed by expression screening using GFP-fusion techniques.

Makoto Ihara; Yoshitaka Takano; Atsuko Yamashita

Transient receptor potential (TRP) channels are members of the voltage gated ion channel superfamily and display the unique characteristic of activation by diverse stimuli. We performed an expression analysis of fungal TRP channels, which possess relatively simple structures yet share the common functional characteristics with the other members, using a green fluorescent protein‐based screening methodology. The analysis revealed that all the tested fungal TRP channels were severely digested in their cytosolic regions during expression, implying the common flexibility of this region, as observed in the recent structural analyses of the fungal member, TRPGz. These characteristics are likely to be important for their diverse functions.

Collaboration


Dive into the Atsuko Yamashita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Kusakabe

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge