Atsushi Haraguchi
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atsushi Haraguchi.
Scientific Reports | 2015
Yu Tahara; Takuya Shiraishi; Yosuke Kikuchi; Atsushi Haraguchi; Daisuke Kuriki; Hiroyuki Sasaki; Hiroaki Motohashi; Tomoko Sakai; Shigenobu Shibata
The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.
npj Aging and Mechanisms of Disease | 2017
Yu Tahara; Yuta Takatsu; Takuya Shiraishi; Yosuke Kikuchi; Mayu Yamazaki; Hiroaki Motohashi; Aya Muto; Hiroyuki Sasaki; Atsushi Haraguchi; Daisuke Kuriki; Takahiro J Nakamura; Shigenobu Shibata
The ability of the circadian clock to adapt to environmental changes is critical for maintaining homeostasis, preventing disease, and limiting the detrimental effects of aging. To date, little is known about age-related changes in the entrainment of peripheral clocks to external cues. We therefore evaluated the ability of the peripheral clocks of the kidney, liver, and submandibular gland to be entrained by external stimuli including light, food, stress, and exercise in young versus aged mice using in vivo bioluminescence monitoring. Despite a decline in locomotor activity, peripheral clocks in aged mice exhibited normal oscillation amplitudes under light–dark, constant darkness, and simulated jet lag conditions, with some abnormal phase alterations. However, age-related impairments were observed in peripheral clock entrainment to stress and exercise stimuli. Conversely, age-related enhancements were observed in peripheral clock entrainment to food stimuli and in the display of food anticipatory behaviors. Finally, we evaluated the hypothesis that deficits in sympathetic input from the central clock located in the suprachiasmatic nucleus of the hypothalamus were in part responsible for age-related differences in the entrainment. Aged animals showed an attenuated entrainment response to noradrenergic stimulation as well as decreased adrenergic receptor mRNA expression in target peripheral organs. Taken together, the present findings indicate that age-related circadian disorganization in entrainment to light, stress, and exercise is due to sympathetic dysfunctions in peripheral organs, while meal timing produces effective entrainment of aged peripheral circadian clocks.
PLOS ONE | 2014
Nobuaki Ohnishi; Yu Tahara; Daisuke Kuriki; Atsushi Haraguchi; Shigenobu Shibata
Circadian clocks in the peripheral tissues of mice are known to be entrained by pulse stimuli such as restricted feeding, novel wheel running, and several other agents. However, there are no reports on high temperature pulse-mediated entrainment on the phase-shift of peripheral clocks in vivo. Here we show that temperature treatment of mice for two days at 41°C, instead of 37°C, for 1–2 h during the inactive period, using a temperature controlled water bath stimulated phase-advance of peripheral clocks in the kidney, liver, and submandibular gland of PER2::LUCIFERASE mice. On the other hand, treatment for 2 days at 35°C ambient room temperature for 2 h did not cause a phase-advance. Maintenance of mice at 41°C in a water bath, sustained the core body temperature at 40–41°C. However, the use of 37°C water bath or the 35°C ambient room temperature elevated the core body temperature to 38.5°C, suggesting that at least a core body temperature of 40–41°C is necessary to cause phase-advance under light-dark cycle conditions. The temperature pulse stimulation at 41°C, instead of 37°C water bath for 2 h led to the elevated expression of Per1 and Hsp70 in the peripheral tissue of mice. In summary, the present study demonstrates that transient high temperature pulse using water bath during daytime causes phase-advance in mouse peripheral clocks in vivo. The present results suggest that hot water bath may affect the phase of peripheral clocks.
Chronobiology International | 2014
Atsushi Haraguchi; Natsumi Aoki; Teiji Ohtsu; Yuko Ikeda; Yu Tahara; Shigenobu Shibata
Free feeding (FF) with a high fat diet (HFD) causes excessive body weight gain, whereas restricted feeding (RF) with a HFD attenuates body weight gain. The effects of timing of feeding with a HFD (day vs. night) and feeding duration on energy homeostasis have not yet been investigated. In this study, we fed mice a HFD or a normal diet (ND) twice a day, during their active and inactive periods, on a schedule. The amount of food was regulated by feeding duration (2, 4 or 8 h). First, we investigated the effects of 4-h RF during active–inactive periods (ND–ND, HFD–HFD, ND–HFD or HFD–ND). Among all the 4-h RF groups, mice consumed almost the same amount of calories as those in the FF[ND] group, even those fed a HFD. Body weight and visceral fat in these three groups were lower than that in the FF[HFD] group. Second, we investigated the effects of RF duration. Body weight and visceral fat were higher in the 8-h groups than in the 4-h groups. Body weight and visceral fat were higher in the 2-h groups than in the 4-h groups even though the 2-h groups had less food. Third, we investigated the effects of eating a HFD during the inactive period, when RF duration was extended (2, 6 or 12 h). Mice were fed with a HFD during the inactive period for 2 h and fed with a ND during the active period for 2, 6 or 12 h. Body weight and visceral fat in these mice were comparable to those in the FF[ND] mice. The results of our first set of experiments suggest that 4-h RF was an adequate feeding duration to control the effect of a HFD on obesity. The results of our second set of experiments suggest 2-h RF (such as speed-eating) and 8-h RF, representative of eating disorders, are unhealthy feeding patterns related to obesity. The results of our third set of experiments suggest that eating a HFD for a short period during the night does not affect body weight and visceral fat. Taken together, these results indicate that consideration to feeding with a HFD during the inactive period and restricting eating habits relieve the risks of body weight gain and visceral fat accumulation.
PLOS ONE | 2017
Ayako Shinozaki; Kenichiro Misawa; Yuko Ikeda; Atsushi Haraguchi; Mayo Kamagata; Yu Tahara; Shigenobu Shibata
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer’s have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Journal of Circadian Rhythms | 2016
Yu Tahara; Ayako Yokota; Takuya Shiraishi; Shunya Yamada; Atsushi Haraguchi; Ayako Shinozaki; Shigenobu Shibata
Mammalian circadian rhythms are governed by an endogenous circadian clock system, including the molecular clock works in each cell and tissue. Adaptation of the circadian clock to different environmental stimuli such as light, food, and stress is essential for homeostasis maintenance. However, the influence of oxidative stress on the circadian clock phase is not fully understood in vitro and in vivo. Here, we examined the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the PERIOD2::LUCIFERASE bioluminescence rhythm in mouse embryonic fibroblasts in vitro and in mouse peripheral tissues in vivo. The circadian clock phase changed with the dose of H2O2 and time of day in vitro; similar phase changes were observed in vivo in the circadian clocks of the peripheral tissues. In addition, mice treated with hemin-induced oxidative stress also showed phase changes of peripheral clocks, similarly as H2O2 treatment. Thus, oxidative stress can entrain circadian clock systems.
Scientific Reports | 2015
Yutaro Hamaguchi; Yu Tahara; Hiroaki Kuroda; Atsushi Haraguchi; Shigenobu Shibata
The circadian clock system in peripheral tissues can endogenously oscillate and is entrained by the light-dark and fasting-feeding cycles in mammals. Although the system’s range of entrainment to light-dark cycles with a non-24 h (<24 h) interval has been studied, the range of entrainment to fasting-feeding cycles with shorter periods (<24 h) has not been investigated in peripheral molecular clocks. In the present study, we measured this range by monitoring the mouse peripheral PER2::LUCIFERASE rhythm in vivo at different periods under each feeding cycle (Tau (T) = 15–24 h) under normal light-dark conditions. Peripheral clocks could be entrained to the feeding cycle with T = 22–24 h, but not to that with T = 15–21 h. Under the feeding cycle with T = 15–18 h, the peripheral clocks oscillated at near the 24-h period, suggesting that they were entrained to the light-dark cycle. Thus, for the first time, we demonstrated the range of entrainment to the non-24 h feeding cycle, and that the circadian range (T = 22–24 h) of feeding stimulus is necessary for peripheral molecular clock entrainment under light-dark cycles.
Scientific Reports | 2015
Kana Tanabe; Eri Kitagawa; Misaki Wada; Atsushi Haraguchi; Kanami Orihara; Yu Tahara; Atsuhito Nakao; Shigenobu Shibata
The mammalian circadian clock controls many physiological processes that include immune responses and allergic reactions. Several studies have investigated the circadian regulation of intestinal permeability and tight junctions known to be affected by cytokines. However, the contribution of circadian clock to food allergy symptoms remains unclear. Therefore, we investigated the role of the circadian clock in determining the severity of food allergies. We prepared an ovalbumin food allergy mouse model, and orally administered ovalbumin either late in the light or late in the dark period under light-dark cycle. The light period group showed higher allergic diarrhea and weight loss than the dark period group. The production of type 2 cytokines, IL-13 and IL-5, from the mesenteric lymph nodes and ovalbumin absorption was higher in the light period group than in the dark period group. Compared to the dark period group, the mRNA expression levels of the tight junction proteins were lower in the light period group. We have demonstrated that increased production of type 2 cytokines and intestinal permeability in the light period induced severe food allergy symptoms. Our results suggest that the time of food antigen intake might affect the determination of the severity of food allergy symptoms.
Scientific Reports | 2018
Yu Tahara; Mayu Yamazaki; Haruna Sukigara; Hiroaki Motohashi; Hiroyuki Sasaki; Hiroki Miyakawa; Atsushi Haraguchi; Yuko Ikeda; Shinji Fukuda; Shigenobu Shibata
Microbiota-derived short-chain fatty acids (SCFAs) and organic acids produced by the fermentation of non-digestible fibre can communicate from the microbiome to host tissues and modulate homeostasis in mammals. The microbiome has circadian rhythmicity and helps the host circadian clock function. We investigated the effect of SCFA or fibre-containing diets on circadian clock phase adjustment in mouse peripheral tissues (liver, kidney, and submandibular gland). Initially, caecal SCFA concentrations, particularly acetate and butyrate, induced significant day-night differences at high concentrations during the active period, which were correlated with lower caecal pH. By monitoring luciferase activity correlated with the clock gene Period2 in vivo, we found that oral administration of mixed SCFA (acetate, butyrate, and propionate) and an organic acid (lactate), or single administration of each SCFA or lactate for three days, caused phase changes in the peripheral clocks with stimulation timing dependency. However, this effect was not detected in cultured fibroblasts or cultured liver slices with SCFA applied to the culture medium, suggesting SCFA-induced indirect modulation of circadian clocks in vivo. Finally, cellobiose-containing diets facilitated SCFA production and refeeding-induced peripheral clock entrainment. SCFA oral gavage and prebiotic supplementation can facilitate peripheral clock adjustment, suggesting prebiotics as novel therapeutic candidates for misalignment.
Scientific Reports | 2016
Takafumi Fukuda; Atsushi Haraguchi; Mari Kuwahara; Kaai Nakamura; Yutaro Hamaguchi; Yuko Ikeda; Yuko Ishida; Guanying Wang; Chise Shirakawa; Yoko Tanihata; Kazuaki Ohara; Shigenobu Shibata
The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food.