Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Matsuzawa is active.

Publication


Featured researches published by Atsushi Matsuzawa.


EMBO Reports | 2001

ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.

Kei Tobiume; Atsushi Matsuzawa; Takumi Takahashi; Hideki Nishitoh; Kei-ichi Morita; Kohsuke Takeda; Osamu Minowa; Kohei Miyazono; Tetsuo Noda; Hidenori Ichijo

Apoptosis signal‐regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H2O2, and activates c‐Jun NH2‐terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF‐ and H2O2‐induced sustained activations of JNK and p38 are lost in ASK1−/− embryonic fibroblasts, and that ASK1−/− cells are resistant to TNF‐ and H2O2‐induced apoptosis. TNF‐ but not Fas‐induced apoptosis requires ROS‐dependent activation of ASK1–JNK/p38 pathways. Thus, ASK1 is selectively required for TNF‐ and oxidative stress‐induced sustained activations of JNK/p38 and apoptosis.


Nature Immunology | 2005

ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity

Atsushi Matsuzawa; Kaoru Saegusa; Takuya Noguchi; Chiharu Sadamitsu; Hideki Nishitoh; Shigenori Nagai; Shigeo Koyasu; Kunihiro Matsumoto; Kohsuke Takeda; Hidenori Ichijo

Apoptosis signal–regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen-activated protein 3-kinase that activates both Jnk and p38 mitogen-activated protein kinases. Here we used ASK1-deficient mice to show that ASK1 was selectively required for lipopolysaccharide-induced activation of p38 but not of Jnk or the transcription factor NF-κB. ASK1 was required for the induction of proinflammatory cytokines dependent on Toll-like receptor 4 (TLR4) but not TLR2 or other TLRs. Consistent with this, ASK1-deficient mice were resistant to lipopolysaccharide-induced septic shock. Lipopolysaccharide induced the production of intracellular reactive oxygen species, which was required for the formation of a complex of the adaptor molecule TRAF6 and ASK1 and subsequent activation of the ASK1-p38 pathway. Our data demonstrate that the reactive oxygen species–dependent TRAF6-ASK1-p38 axis is crucial for TLR4-mediated mammalian innate immunity.


Nature Immunology | 2008

Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

Sivakumar Vallabhapurapu; Atsushi Matsuzawa; Wei Zhou Zhang; Ping-Hui Tseng; Jonathan J. Keats; Haopeng Wang; Dario A. A. Vignali; P. Leif Bergsagel; Michael Karin

The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-κB (NF-κB) signaling in resting cells by targeting NF-κB–inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.


Biochimica et Biophysica Acta | 2008

Redox control of cell fate by MAP kinase : physiological roles of ASK1-MAP kinase pathway in stress signaling

Atsushi Matsuzawa; Hidenori Ichijo

The intracellular redox state is a key determinant of cell fate, such as cell survival, proliferation, differentiation, and apoptosis. Redox imbalance is closely linked to a variety of human diseases, so that the intracellular redox condition should be tightly regulated. The redox state of the cell is a consequence of the precise balance between the levels of oxidizing and reducing equivalents, such as reactive oxygen species (ROS) and endogenous antioxidants. ROS are not only toxicants to the cell, but also second messengers in intracellular signal transduction, and control the action of several signaling pathways, including mitogen-activated protein (MAP) kinases. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase of the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways, which is preferentially activated in response to various types of stress such as oxidative stress and plays pivotal roles in a wide variety of cellular responses. Recent studies have revealed that ASK1 is also required for innate immune response through ROS production. In this review, we focus on redox control of cell function by MAP kinase signaling, and provide the advanced mechanism of redox-regulated ASK1 activation and physiological roles of the ASK1-MAP kinase pathway in stress signaling.


Genes & Development | 2008

ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1

Hideki Nishitoh; Hisae Kadowaki; Atsushi Nagai; Takeshi Maruyama; Takanori Yokota; Hisashi Fukutomi; Takuya Noguchi; Atsushi Matsuzawa; Kohsuke Takeda; Hidenori Ichijo

Mutation in Cu/Zn-superoxide dismutase (SOD1) is a cause of familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 protein (SOD1(mut)) induces motor neuron death, although the molecular mechanism of SOD1(mut)-induced cell death remains controversial. Here we show that SOD1(mut) specifically interacted with Derlin-1, a component of endoplasmic reticulum (ER)-associated degradation (ERAD) machinery and triggered ER stress through dysfunction of ERAD. SOD1(mut)-induced ER stress activated the apoptosis signal-regulating kinase 1 (ASK1)-dependent cell death pathway. Perturbation of binding between SOD1(mut) and Derlin-1 by Derlin-1-derived oligopeptide suppressed SOD1(mut)-induced ER stress, ASK1 activation, and motor neuron death. Moreover, deletion of ASK1 mitigated the motor neuron loss and extended the life span of SOD1(mut) transgenic mice. These findings demonstrate that ER stress-induced ASK1 activation, which is triggered by the specific interaction of Derlin-1 with SOD1(mut), is crucial for disease progression of familial ALS.


Cancer Cell | 2008

Hepatocyte Necrosis Induced by Oxidative Stress and IL-1α Release Mediate Carcinogen-Induced Compensatory Proliferation and Liver Tumorigenesis

Toshiharu Sakurai; Guobin He; Atsushi Matsuzawa; Guann-Yi Yu; Shin Maeda; Gary Hardiman; Michael Karin

Hepatocyte I kappaB kinase beta (IKK beta) inhibits hepatocarcinogenesis by suppressing accumulation of reactive oxygen species (ROS) and liver damage, whereas JNK1 activation promotes ROS accumulation, liver damage, and carcinogenesis. We examined whether hepatocyte p38 alpha, found to inhibit liver carcinogenesis, acts similarly to IKK beta in control of ROS metabolism and cell death. Hepatocyte-specific p38 alpha ablation enhanced ROS accumulation and liver damage, which were prevented upon administration of an antioxidant. In addition to elevated ROS accumulation, hepatocyte death, augmented by loss of either IKK beta or p38 alpha, was associated with release of IL-1 alpha. Inhibition of IL-1 alpha action or ablation of its receptor inhibited carcinogen-induced compensatory proliferation and liver tumorigenesis. IL-1 alpha release by necrotic hepatocytes is therefore an important mediator of liver tumorigenesis.


Nature Immunology | 2010

Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines

Ping-Hui Tseng; Atsushi Matsuzawa; Weizhou Zhang; Takashi Mino; Dario A. A. Vignali; Michael Karin

Balanced production of type I interferons and proinflammatory cytokines after engagement of Toll-like receptors (TLRs), which signal through adaptors containing a Toll–interleukin 1 receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, regulated the production of interferon and proinflammatory cytokines in different ways. Degradative ubiquitination of TRAF3 during MyD88-dependent TLR signaling was essential for the activation of mitogen-activated protein kinases (MAPKs) and production of inflammatory cytokines. In contrast, TRIF-dependent signaling triggered noncanonical TRAF3 self-ubiquitination that activated the interferon response. Inhibition of degradative ubiquitination of TRAF3 prevented the expression of all proinflammatory cytokines without affecting the interferon response.


Circulation Research | 2003

Apoptosis Signal-Regulating Kinase 1 Plays a Pivotal Role in Angiotensin II–Induced Cardiac Hypertrophy and Remodeling

Yasuhiro Izumiya; Shokei Kim; Yasukatsu Izumi; Kaoru Yoshida; Minoru Yoshiyama; Atsushi Matsuzawa; Hidenori Ichijo; Hiroshi Iwao

Abstract— Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo. In this study, by using mice deficient in ASK1 (ASK1−/− mice), we investigated the role of ASK1 in cardiac hypertrophy and remodeling induced by Ang II. Left ventricular (LV) ASK1 was activated by Ang II infusion in wild-type mice, which was mediated by angiotensin II type 1 receptor and superoxide. Although Ang II-induced hypertensive effect was comparable to wild-type and ASK1−/− mice, LV ASK1 activation by Ang II was not detectable in ASK1−/− mice, and p38 and c-Jun N-terminal kinase (JNK) activation was lesser in ASK−/− mice than in wild-type mice. Elevation of blood pressure by continuous Ang II infusion was comparable between ASK1−/− and wild-type mice. However, Ang II–induced cardiac hypertrophy and remodeling, including cardiomyocyte hypertrophy, cardiac hypertrophy–related mRNA upregulation, cardiomyocyte apoptosis, interstitial fibrosis, coronary arterial remodeling, and collagen gene upregulation, was significantly attenuated in ASK1−/− mice compared with wild-type mice. These results provided the first in vivo evidence that ASK1 is the critical signaling molecule for Ang II–induced cardiac hypertrophy and remodeling. Thus, ASK1 is proposed to be a potential therapeutic target for cardiac diseases.


Science | 2008

Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex

Atsushi Matsuzawa; Ping-Hui Tseng; Sivakumar Vallabhapurapu; Jun-Li Luo; Weizhou Zhang; Haopeng Wang; Dario A. A. Vignali; Ewen Gallagher; Michael Karin

Cytokine signaling is thought to require assembly of multicomponent signaling complexes at cytoplasmic segments of membrane-embedded receptors, in which receptor-proximal protein kinases are activated. Indeed, CD40, a tumor necrosis factor receptor (TNFR) family member, forms a complex containing adaptor molecules TRAF2 and TRAF3, ubiquitin-conjugating enzyme Ubc13, cellular inhibitor of apoptosis proteins 1 and 2 (c-IAP1/2), IκB kinase regulatory subunit IKKγ (also called NEMO), and mitogen-activated protein kinase (MAPK) kinase kinase MEKK1 upon ligation. TRAF2, Ubc13, and IKKγ were required for complex assembly and activation of MEKK1 and MAPK cascades. However, these kinases were not activated unless the multicomponent signaling complex translocated from CD40 to the cytosol upon c-IAP1/2–induced degradation of TRAF3. This two-stage signaling mechanism may apply to other innate immune receptors, accounting for spatial and temporal separation of MAPK and IKK signaling.


Antioxidants & Redox Signaling | 2002

Physiological Roles of ASK1-Mediated Signal Transduction in Oxidative Stress- and Endoplasmic Reticulum Stress-Induced Apoptosis: Advanced Findings from ASK1 Knockout Mice

Atsushi Matsuzawa; Hideki Nishitoh; Kei Tobiume; Kohsuke Takeda; Hidenori Ichijo

Apoptosis, a molecularly regulated form of cell death, is essential for the normal functioning and homeostasis of most multicellular organisms, and can be induced by a range of environmental, physical, and chemical stresses. As the cellular decision to live or to die is made by the coordinated action and balancing of many different pro- and antiapoptotic factors, defects in control of this coordination and balance may contribute to a variety of human diseases, including cancer and autoimmune and neurodegenerative conditions. In recent years, multiple factors associated with the execution of apoptosis, such as caspases and Bcl-2 family members, have been discovered and their complicated signaling and molecular interactions have been demonstrated; however, the precise mechanistic basis for intracellular and/or extracellular stress-induced apoptosis remains to be fully characterized. Protein kinases contribute to regulation of life and death decisions made in response to various stress signals, and the actions of pro- and antiapoptotic factors are often affected by modulation of the phosphorylation status of key elements in the execution of apoptosis. Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein (MAP) kinase kinase kinase family, which activates both the MKK4/MKK7-JNK and MKK3/MKK6-p38 MAP kinase pathways and constitutes a pivotal signaling pathway in various types of stress-induced apoptosis. We have recently shown through ASK1 gene ablation in mice that ASK1 plays essential roles in oxidative stress- and endoplasmic reticulum (ER) stress-induced apoptosis. These stresses are closely linked to physiological phenomena in the control of cell fate, and the resultant apoptosis is implicated in the pathophysiology of a broad range of human diseases. This article reviews our new findings on the physiological roles of ASK1-mediated signal transduction in stress responses and the molecular mechanisms by which ASK1 determines cell fate such as survival, differentiation, or apoptosis, with special focus on the regulatory mechanisms of ASK1-mediated apoptosis induced by oxidative stress and ER stress.

Collaboration


Dive into the Atsushi Matsuzawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Karin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Enzler

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge