Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Miyagi is active.

Publication


Featured researches published by Atsushi Miyagi.


Nature Physics | 2017

High-frequency microrheology reveals cytoskeleton dynamics in living cells

Annafrancesca Rigato; Atsushi Miyagi; Simon Scheuring; Felix Rico

Living cells are viscoelastic materials, with the elastic response dominating at long timescales (≳1 ms)1. At shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce2. Here, we develop high-frequency microrheology (HF-MR) to probe the viscoelastic response of living cells from 1Hz to 100 kHz. We report the viscoelasticity of different cell types and upon cytoskeletal drug treatments. At previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequency, providing a univocal mechanical fingerprint. Microrheology over a wide dynamic range up to the frequency of action of the molecular components provides a mechanistic understanding of cell mechanics.


Nature Nanotechnology | 2016

High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale

Atsushi Miyagi; Christophe Chipot; Martina Rangl; Simon Scheuring

Annexins are abundant cytoplasmic proteins that can bind to negatively charged phospholipids in a Ca(2+)-dependent manner, and are known to play a role in the storage of Ca(2+) and membrane healing. Little is known, however, about the dynamic processes of protein-Ca(2+)-membrane assembly and disassembly. Here we show that high-speed atomic force microscopy (HS-AFM) can be used to repeatedly induce and disrupt annexin assemblies and study their structure, dynamics and interactions. Our HS-AFM set-up is adapted for such biological applications through the integration of a pumping system for buffer exchange and a pulsed laser system for uncaging caged compounds. We find that biochemically identical annexins (annexin V) display different effective Ca(2+) and membrane affinities depending on the assembly location, providing a wide Ca(2+) buffering regime while maintaining membrane stabilization. We also show that annexin is membrane-recruited and forms stable supramolecular assemblies within ∼5 s in conditions that are comparable to a membrane lesion in a cell. Molecular dynamics simulations provide atomic detail of the role played by Ca(2+) in the reversible binding of annexin to the membrane surface.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Direct visualization of glutamate transporter elevator mechanism by high-speed AFM

Yi Ruan; Atsushi Miyagi; Xiaoyu Wang; Mohamed Chami; Olga Boudker; Simon Scheuring

Significance Glutamate transporters play a crucial role for the recovery of the neurotransmitter glutamate from the synaptic cleft. Thus far, studies of the transport dynamics and detailed information of the working mechanism of this family of transmembrane proteins have been sparse and indirect. Here, we used high-speed atomic force microscopy (HS-AFM) to characterize the transport mechanisms and dynamics of a prokaryotic glutamate transporter homolog GltPh in lipid membranes. We assess transport dynamics as a function of substrate in the imaging buffer and provide direct visual evidence that GltPh transport domains within the trimer are entirely independent. Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii, sodium/aspartate symporter GltPh, suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted GltPh at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm “elevator” movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.


ACS Nano | 2016

Glasslike Membrane Protein Diffusion in a Crowded Membrane

Ignacio Munguira; Ignacio Casuso; Hirohide Takahashi; Felix Rico; Atsushi Miyagi; Mohamed Chami; Simon Scheuring

Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion.


Nature Communications | 2016

Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels

Martina Rangl; Atsushi Miyagi; Julia Kowal; Henning Stahlberg; Crina M. Nimigean; Simon Scheuring

Eukaryotic cyclic nucleotide-modulated (CNM) ion channels perform various physiological roles by opening in response to cyclic nucleotides binding to a specialized cyclic nucleotide-binding domain. Despite progress in structure-function analysis, the conformational rearrangements underlying the gating of these channels are still unknown. Here, we image ligand-induced conformational changes in single CNM channels from Mesorhizobium loti (MloK1) in real-time, using high-speed atomic force microscopy. In the presence of cAMP, most channels are in a stable conformation, but a few molecules dynamically switch back and forth (blink) between at least two conformations with different heights. Upon cAMP depletion, more channels start blinking, with blinking heights increasing over time, suggestive of slow, progressive loss of ligands from the tetramer. We propose that during gating, MloK1 transitions from a set of mobile conformations in the absence to a stable conformation in the presence of ligand and that these conformations are central for gating the pore.


Journal of Molecular Biology | 2017

Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy

Martina Rangl; Luca Rima; Jessica Klement; Atsushi Miyagi; Sandro Keller; Simon Scheuring

Phospholipases are abundant in various types of cells and compartments, where they play key roles in physiological processes as diverse as digestion, cell proliferation, and neural activation. In Gram-negative bacteria, outer membrane phospholipase A (OmpLA) is involved in outer-membrane lipid homeostasis and bacterial virulence. Although the enzymatic activity of OmpLA can be probed with an assay relying on an artificial monoacyl thioester substrate, only little is known about its activity on diacyl phospholipids. Here, we used high-speed atomic force microscopy (HS-AFM) to directly image enzymatic phospholipid degradation by OmpLA in real time. In the absence of Ca2+, reconstituted OmpLA diffused within a phospholipid bilayer without revealing any signs of phospholipase activity. Upon the addition of Ca2+, OmpLA was activated and degraded the membrane with a turnover of ~2 phospholipid molecules per second and per OmpLA dimer until most of the membrane phospholipids were hydrolyzed and the protein became tightly packed.


Small | 2016

Temperature‐Controlled High‐Speed AFM: Real‐Time Observation of Ripple Phase Transitions

Hirohide Takahashi; Atsushi Miyagi; Lorena Redondo-Morata; Simon Scheuring

With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level.


Review of Scientific Instruments | 2016

Automated force controller for amplitude modulation atomic force microscopy

Atsushi Miyagi; Simon Scheuring

Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.


Nano Letters | 2018

High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator

Atsushi Miyagi; Beatrice Ramm; Petra Schwille; Simon Scheuring

The MinDE protein system from E. coli has recently been identified as a minimal biological oscillator, based on two proteins only: The ATPase MinD and the ATPase activating protein MinE. In E. coli, the system works as the molecular ruler to place the divisome at midcell for cell division. Despite its compositional simplicity, the molecular mechanism leading to protein patterns and oscillations is still insufficiently understood. Here we used high-speed atomic force microscopy to analyze the mechanism of MinDE membrane association/dissociation dynamics on isolated membrane patches, down to the level of individual point oscillators. This nanoscale analysis shows that MinD association to and dissociation from the membrane are both highly cooperative but mechanistically different processes. We propose that they represent the two directions of a single allosteric switch leading to MinD filament formation and depolymerization. Association/dissociation are separated by rather long apparently silent periods. The membrane-associated period is characterized by MinD filament multivalent binding, avidity, while the dissociated period is defined by seeding of individual MinD. Analyzing association/dissociation kinetics with varying MinD and MinE concentrations and dependent on membrane patch size allowed us to disentangle the essential dynamic variables of the MinDE oscillation cycle.


Biophysical Journal | 2017

Development of Temperature-Controlled High-Speed AFM

Hirohide Takahashi; Atsushi Miyagi; Lorena Redondo-Morata; Simon Scheuring

Collaboration


Dive into the Atsushi Miyagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martina Rangl

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Rico

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Ruan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge