Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Tamai is active.

Publication


Featured researches published by Atsushi Tamai.


Nature | 2010

Stomagen positively regulates stomatal density in Arabidopsis.

Shigeo S. Sugano; Tomoo Shimada; Yu Imai; Katsuya Okawa; Atsushi Tamai; Masashi Mori; Ikuko Hara-Nishimura

Stomata in the epidermal tissues of leaves are valves through which passes CO2, and as such they influence the global carbon cycle. The two-dimensional pattern and density of stomata in the leaf epidermis are genetically and environmentally regulated to optimize gas exchange. Two putative intercellular signalling factors, EPF1 and EPF2, function as negative regulators of stomatal development in Arabidopsis, possibly by interacting with the receptor-like protein TMM. One or more positive intercellular signalling factors are assumed to be involved in stomatal development, but their identities are unknown. Here we show that a novel secretory peptide, which we designate as stomagen, is a positive intercellular signalling factor that is conserved among vascular plants. Stomagen is a 45-amino--rich peptide that is generated from a 102-amino-acid precursor protein designated as STOMAGEN. Both an in planta analysis and a semi-in-vitro analysis with recombinant and chemically synthesized stomagen peptides showed that stomagen has stomata-inducing activity in a dose-dependent manner. A genetic analysis showed that TMM is epistatic to STOMAGEN (At4g12970), suggesting that stomatal development is finely regulated by competitive binding of positive and negative regulators to the same receptor. Notably, STOMAGEN is expressed in inner tissues (the mesophyll) of immature leaves but not in the epidermal tissues where stomata develop. This study provides evidence of a mesophyll-derived positive regulator of stomatal density. Our findings provide a conceptual advancement in understanding stomatal development: inner photosynthetic tissues optimize their function by regulating stomatal density in the epidermis for efficient uptake of CO2.


Journal of Virology | 2003

Tomato Mosaic Virus Replication Protein Suppresses Virus-Targeted Posttranscriptional Gene Silencing

Kenji Kubota; Shinya Tsuda; Atsushi Tamai; Tetsuo Meshi

ABSTRACT Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L11 and L11A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L11A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed.


The EMBO Journal | 2003

Subcellular localization of host and viral proteins associated with tobamovirus RNA replication

Yuka Hagiwara; Keisuke Komoda; Takuya Yamanaka; Atsushi Tamai; Tetsuo Meshi; Ryo Funada; Tomohiro Tsuchiya; Satoshi Naito; Masayuki Ishikawa

Arabidopsis TOM1 (AtTOM1) and TOM2A (AtTOM2A) are integral membrane proteins genetically identified to be necessary for efficient intracellular multiplication of tobamoviruses. AtTOM1 interacts with the helicase domain polypeptide of tobamovirus‐encoded replication proteins and with AtTOM2A, suggesting that both AtTOM1 and AtTOM2A are integral components of the tobamovirus replication complex. We show here that AtTOM1 and AtTOM2A proteins tagged with green fluorescent protein (GFP) are targeted to the vacuolar membrane (tonoplast)‐like structures in plant cells. In subcellular fractionation analyses, GFP–AtTOM2A, AtTOM2A and its tobacco homolog NtTOM2A were predominantly fractionated to low‐density tonoplast‐rich fractions, whereas AtTOM1–GFP, AtTOM1 and its tobacco homolog NtTOM1 were distributed mainly into the tonoplast‐rich fractions and partially into higher‐buoyant‐density fractions containing membranes from several other organelles. The tobamovirus‐encoded replication proteins were co‐fractionated with both NtTOM1 and viral RNA‐dependent RNA polymerase activity. The replication proteins were also found in the fractions containing non‐membrane‐bound proteins, but neither NtTOM1 nor the polymerase activity was detected there. These observations suggest that the formation of tobamoviral RNA replication complex occurs on TOM1‐containing membranes and is facilitated by TOM2A.


Molecular Plant-microbe Interactions | 2001

Cell-to-cell movement of potato virus X: The role of p12 and p8 encoded by the second and third open reading frames of the triple gene block

Atsushi Tamai; Tetsuo Meshi

Potato virus X (PVX) requires three proteins, p25, p12, and p8, encoded by the triple gene block plus the coat protein (CP) for cell-to-cell movement. When each of these proteins was co-expressed with a cytosolic green fluorescent protein (GFP) in the epidermal cells of Nicotiana benthamiana by the microprojectile bombardment-mediated gene delivery method, only p12 enhanced diffusion of co-expressed GFP, indicating an ability to alter plasmodesmal permeability. p25, p12, and CP, expressed transiently in the initially infected cells, transcomplemented the corresponding movement-defective mutants to spread through two or more cell boundaries. Thus, these proteins probably move from cell to cell with the genomic RNA. In contrast, p8 only functioned intracellularly and was not absolutely required for cell-to-cell movement. Since overexpression of p12 overcame the p8 deficiency, p8 appears to facilitate the functioning of p12, presumably by mediating its intracellular trafficking. Considering the likelihood that p12 and p8 are membrane proteins, it is suggested that intercellular as well as intracellular movement of PVX involves a membrane-mediated process.


Molecular Plant-microbe Interactions | 2001

Tobamoviral Movement Protein Transiently Expressed in a Single Epidermal Cell Functions Beyond Multiple Plasmodesmata and Spreads Multicellularly in an Infection-Coupled Manner

Atsushi Tamai; Tetsuo Meshi

Cell-to-cell movement of a plant virus requires expression of the movement protein (MP). It has not been fully elucidated, however, how the MP functions in primary infected cells. With the use of a microprojectile bombardment-mediated DNA infection system for Tomato mosaic virus (ToMV), we found that the cotransfected ToMV MP gene exerts its effects in the initially infected cells and in their surrounding cells to achieve multicellular spread of movement-defective ToMV. Five other tobamoviral MPs examined also transcomplemented the movement-defective phenotype of ToMV, but the Cucumber mosaic virus 3a MP did not. Together with the cell-to-cell movement of the mutant virus, a fusion between the MP and an enhanced green fluorescent protein variant (EGFP) expressed in trans was distributed multicellularly and localized primarily in plasmodesmata between infected cells. In contrast, in noninfected sites the MP-EGFP fusion accumulated predominantly inside the bombarded cells as irregularly shaped aggregates, and only a minute amount of the fusion was found in plasmodesmata. Thus, the behavior of ToMV MP is greatly modulated in the presence of a replicating virus and it is highly likely that the MP spreads in the infection sites, coordinating with the cell-to-cell movement of the viral genome.


Archives of Virology | 2006

Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells

Koji Dohi; Masaki Nishikiori; Atsushi Tamai; Masayuki Ishikawa; Tetsuo Meshi; Masashi Mori

Summary.Although suspension-cultured plant cells have many potential merits as sources of useful proteins, the lack of an efficient expression system has prevented using this approach. In this study, we established an inducible tomato mosaic virus (ToMV) infection system in tobacco BY-2 suspension-cultured cells to inducibly and efficiently produce a foreign protein. In this system, a modified ToMV encoding a foreign protein as replacement of the coat protein is expressed from stably transformed cDNA under the control of an estrogen-inducible promoter in transgenic BY-2 cells. Estrogen added to the culture activates an estrogen-inducible transactivator expressed constitutively from the transgene and induces transcription and replication of viral RNA. In our experiments, accumulation of viral RNA and expression of green fluorescent protein (GFP) encoded in the virus were observed within 24 h after induction. The amount of GFP reached approximately 10% of total soluble protein 4 d after induction. In contrast, neither viral RNA nor GFP were detected in uninduced cells. The inducible virus infection system established here should be utilized not only for the expression of foreign proteins, but also for investigations into the viral replication process in cultured plant cells.


Plant and Cell Physiology | 2010

Ectopic Expression of an Esterase, Which is a Candidate for the Unidentified Plant Cutinase, Causes Cuticular Defects in Arabidopsis thaliana

Kentaro Takahashi; Tomoo Shimada; Maki Kondo; Atsushi Tamai; Masashi Mori; Mikio Nishimura; Ikuko Hara-Nishimura

Cutinase is an esterase that degrades the polyester cutin, a major component of the plant cuticle. Although cutinase activity has been detected in pollen, the genes encoding this enzyme have not been identified. Here, we report the identification and characterization of Arabidopsis CDEF1 (cuticle destructing factor 1), a novel candidate gene encoding cutinase. CDEF1 encodes a member of the GDSL lipase/esterase family of proteins, although fungal and bacterial cutinases belong to the alpha/beta hydrolase superfamily which is different from the GDSL lipase/esterase family. According to the AtGenExpress microarray data, CDEF1 is predominantly expressed in pollen. The ectopic expression of CDEF1 driven by the 35S promoter caused fusion of organs, including leaves, stems and flowers, and increased surface permeability. Ultrastructural analysis revealed that the cuticle of the transgenic plants was often disrupted and became discontinuous. Subcellular analysis with green fluorescent protein (GFP)-tagged CDEF1 showed that the protein is secreted to the extracellular space in leaves. The recombinant CDEF1 protein has esterase activity. These results are consistent with cutinase being secreted from cells and directly degrading the polyester in the cuticle. CDEF1 promoter activity was detected in mature pollen and pollen tubes, suggesting that CDEF1 is involved in the penetration of the stigma by pollen tubes. Additionally, we found CDEF1 expression at the zone of lateral root emergence, which suggests that CDEF1 degrades cell wall components to facilitate the emergence of the lateral roots. Our findings suggest that CDEF1 is a candidate gene for the unidentified plant cutinase.


The Plant Cell | 2000

AHM1, a Novel Type of Nuclear Matrix–Localized, MAR Binding Protein with a Single AT Hook and a J Domain–Homologous Region

Gaku Morisawa; Atsushi Han-yama; Ichiro Moda; Atsushi Tamai; Masaki Iwabuchi; Tetsuo Meshi

Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook–containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain–homologous region and a Zn finger–like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger–like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones.


Virology | 2003

Cucumovirus- and bromovirus-encoded movement functions potentiate cell-to-cell movement of tobamo- and potexviruses

Atsushi Tamai; Kenji Kubota; Hideaki Nagano; Motoyasu Yoshii; Masayuki Ishikawa; Kazuyuki Mise; Tetsuo Meshi

Cucumber mosaic virus (CMV, a cucumovirus) and Brome mosaic virus (BMV, a bromovirus) require the coat protein (CP) in addition to the 3a movement protein (MP) for cell-to-cell movement, while Cowpea chlorotic mottle virus (CCMV, a bromovirus) does not. Using bombardment-mediated transcomplementation assays, we investigated whether the movement functions encoded by these viruses potentiate cell-to-cell movement of movement-defective Tomato mosaic virus (ToMV, a tobamovirus) and Potato virus X (PVX, a potexvirus) mutants in Nicotiana benthamiana. Coexpression of CMV 3a and CP, but neither protein alone, complemented the defective movement of ToMV and PVX. A C-terminal deletion in CMV 3a (3a Delta C33) abolished the requirement of CP in transporting the ToMV genome. The action of 3a Delta C33 was inhibited by coexpression of wild-type 3a. These findings were confirmed in tobacco with ToMV-CMV chimeric viruses. Either BMV 3a or CCMV 3a alone efficiently complemented the movement-defective phenotype of the ToMV mutant. Therefore, every 3a protein examined intrinsically possesses the activity required to act as MP. In transcomplementation of the PVX mutant, the activities of BMV 3a, CCMV 3a, and CMV 3a Delta C33 were very low. The activities of the bromovirus 3a proteins were enhanced by coexpression of the cognate CP but the activity of CMV 3a Delta C33 was not. Based on these results, possible roles of cucumo- and bromovirus CPs in cell-to-cell movement are discussed.


Molecular Plant Pathology | 2009

Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement

Nobumitsu Sasaki; Takuya Ogata; Masakazu Deguchi; Shoko Nagai; Atsushi Tamai; Tetsuo Meshi; Shigeki Kawakami; Yuichiro Watanabe; Yasuhiko Matsushita; Hiroshi Nyunoya

Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.

Collaboration


Dive into the Atsushi Tamai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Mori

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Koji Dohi

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge