Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atticus H. Hainsworth is active.

Publication


Featured researches published by Atticus H. Hainsworth.


Neuropharmacology | 2000

GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke

A. Richard Green; Atticus H. Hainsworth; David M. Jackson

It has been shown that enhancing the function of the major inhibitory neurotransmitter GABA decreases glutamatergic activity in the brain. Since increased glutamatergic activity is the major primary event that results in cell death following an acute hypoxic-ischaemic stroke, GABAmimetic drugs might therefore be expected to be neuroprotective. This review examines the evidence that GABAergic function is acutely depressed following an ischaemic insult, and also reviews the data that suggest that increasing cerebral GABA concentration has a neuroprotective effect, as does the administration of some (but not all) GABAmimetic agents. The GABA uptake inhibitor CI-966, the GABA(A) agonist muscimol and the GABA(A)mimetic clomethiazole have all been shown to be neuroprotective in animal models of stroke when given after the ischaemic insult. In contrast, benzodiazepines and particularly barbiturates, although potent GABA(A) potentiators, have shown little promise as neuroprotectants. The diversity of GABA(A) receptor subtypes and the in vivo efficacy of certain GABA(A) receptor ligands in animal models of stroke suggests that GABAmimetic drugs are an undervalued approach to stroke therapy.


Annals of Neurology | 2005

Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients

Alessandro Stefani; Ernesto Fedele; Salvatore Galati; Olimpia Pepicelli; Stefania Frasca; Mariangela Pierantozzi; Antonella Peppe; Livia Brusa; Antonio Orlacchio; Atticus H. Hainsworth; Giuseppe Gattoni; Paolo Stanzione; Giorgio Bernardi; Maurizio Raiteri; Paolo Mazzone

Parkinsons disease patients benefit from deep brain stimulation (DBS) in subthalamic nucleus (STN), but the basis for this effect is still disputed. In this intraoperative microdialysis study, we found elevated cGMP extracellular concentrations in the internal segment of the globus pallidus, despite negligible changes in glutamate levels, during a clinically effective STN‐DBS. This supports the view that a clinically beneficial effect of STN‐DBS is paralleled by an augmentation (and not an inactivation) of the STN output onto the GPi. Ann Neurol 2005;57:448–452


Stroke | 2000

Is Pharmacological Neuroprotection Dependent on Reduced Glutamate Release

Paolo Calabresi; Barbara Picconi; Emilia Saulle; Diego Centonze; Atticus H. Hainsworth; Giorgio Bernardi

BACKGROUND AND PURPOSE The aim of this study was to determinate the possible role of the ionotropic glutamate receptor in the expression of irreversible electrophysiological changes induced by in vitro ischemia and to test whether the neuroprotective action of various neurotransmitter agonists and drugs of clinical interest is related to a presynaptic inhibitory action at glutamatergic synapses. METHODS Intracellular and extracellular recordings have been performed in a rat corticostriatal slice preparation. Different pharmacological compounds have been tested on corticostriatal glutamatergic transmission in control conditions and in an in vitro model of ischemia (oxygen and glucose deprivation). RESULTS In vitro ischemia lasting 10 minutes produced an irreversible loss of the field potential recorded from striatal slices after cortical stimulation. Preincubation of the slices with 3 micromol/L 6-cyano-7-nitroquinoxaline-2,3-dione (an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid [AMPA] receptor antagonist) allowed a significant recovery of the field potential amplitude (P<0.05, n=6), whereas incubation with 30 micromol/L aminophosphonovaleric acid (an N-methyl-D-aspartate receptor antagonist) did not produce a significant recovery after 10 minutes of ischemia (P>0.05, n=7). Bath application of 3 mmol/L glutamate for 5 minutes produced a complete but reversible inhibition of the field potential amplitude. When a similar application was coupled with a brief period of ischemia (5 minutes), which produced, per se, only a transient inhibition of the field potential, it caused an irreversible loss of this parameter. We also tested the possible neuroprotective effect of neurotransmitter agonists reducing the release of glutamate from corticostriatal terminals. Agonists acting on purinergic (adenosine), muscarinic (oxotremorine), and metabotropic glutamate receptors (L-serine o-phosphate [L-SOP]) significantly (P<0.001, n=8 for each agonist) reduced glutamatergic synaptic potentials, with each showing different potencies. The EC(50) was 26.4 micromol/L for adenosine, 0. 08 micromol/L for oxotremorine, and 0.89 micromol/L for L-SOP. Concentrations of these agonists producing the maximal inhibition of the synaptic potential were tested on the ischemia-induced irreversible loss of field potential. Adenosine (P<0.05, n=9) and oxotremorine (P<0.05, n=8) showed significant neuroprotective action, whereas L-SOP was ineffective (P>0.05, n=10). Similarly, putative neuroprotective drugs significantly (P<0.001, n=10 for each drug) reduced the amplitude of corticostriatal potential, with different EC(50) values (phenytoin, 33.5 micromol/L; gabapentin, 96.8 micromol/L; lamotrigine, 26.7 micromol/L; riluzole, 6 micromol/L; and sipatrigine, 2 micromol/L). Concentration of these drugs producing maximal inhibition of the amplitude of corticostriatal potentials showed a differential neuroprotective action on the ischemic electrical damage. Phenytoin (P<0.05, n=10), lamotrigine (P<0.05, n=10), riluzole (P<0.05, n=9), and sipatrigine (P<0.001, n=10) produced a significant neuroprotection, whereas gabapentin (P>0.05, n=11) was ineffective. The neuroprotective action of transmitter agonists and clinical drugs was not related to their ability in decreasing glutamate release, as detected by changes in the paired-pulse facilitation protocol. CONCLUSIONS Ionotropic glutamate receptors, and particularly AMPA-like receptors, play a role in the irreversible loss of field potential amplitude induced by ischemia in the striatum. Drugs acting by reducing glutamatergic corticostriatal transmission may show a neuroprotective effect. However, their efficacy does not seem to be directly related to their capability to decrease glutamate release from corticostriatal terminals. We suggest that additional modulatory actions on voltage-dependent conductances and on ischemia-induced ion distribution at the postsynaptic site may also exert a crucial role.


Neuroreport | 2002

Lamotrigine derivatives and riluzole inhibit INa,P in cortical neurons.

Francesca Spadoni; Atticus H. Hainsworth; Nicola B. Mercuri; Luigi Caputi; Giuseppina Martella; Franco Lavaroni; Giorgio Bernardi; Alessandro Stefani

The persistent, slowly inactivating fraction of the sodium current is involved in key functions in the CNS such as dendritic integration of synaptic inputs and cellular excitability. We have studied whether established anti-epileptic drugs and neuroprotective agents target the persistent sodium current. Two lamotrigine derivatives (sipatrigine and 202W92) and riluzole inhibited the persistent sodium current at low, therapeutic concentrations. In contrast, lamotrigine and the classical antiepileptic agents phenytoin and valproic acid blocked the fast-inactivating sodium channel but failed to affect the persistent fraction. The ability to influence either mode of channel activaty may represent a defining feature of each drug subclass, changing profoundly their clinical indications. Given the damaging role of a sustained influx of sodium in both pharmaco-resistant seizures or excitotoxic insults, we suggest the utilization of drugs that suppress the persistent conductance.


European Journal of Pharmacology | 2003

Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents.

Atticus H. Hainsworth; Nicolle C.L. McNaughton; Alexey Pereverzev; Toni Schneider; Andrew D. Randall

Relatively little has been published on the pharmacology of R-type and T-type Ca(2+) channels. Here, whole-cell Ca(2+) channel currents were recorded from human embryonic kidney 293 cell-lines transfected with either alpha1E subunits (R-type currents) or alpha1G or alpha1I subunits (T-type currents). R-type currents were inhibited by sipatrigine and the related compound 202W92 (R-(-)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)pyrimidine) with IC(50) 10 and 56 microM, respectively. A therapeutic concentration of lamotrigine (10 microM) inhibited R-type currents (30%) but was without effect on alpha1I-mediated T-type currents. Lamotrigine was also a weak inhibitor of T-type currents mediated by alpha1G subunits (<10% inhibition by 100 microM).


Journal of Neural Transmission-supplement | 2006

Deep brain stimulation in Parkinson’s disease patients: biochemical evidence

Alessandro Stefani; Ernesto Fedele; S. Galati; Maurizio Raiteri; O. Pepicelli; L. Brusa; M. Pierantozzi; A. Peppe; Antonio Pisani; G. Gattoni; Atticus H. Hainsworth; Giorgio Bernardi; P. Stanzione; P. Mazzone

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinsons disease (PD) patients augments STN-driven excitation of the internal globus pallidus (GPi). However, other DBS-induced changes are largely unknown. Here we report the biochemical effects of STN-DBS in two basal ganglia stations (putamen--PUT--and GPi) and in a thalamic relay nucleus, the anteroventral thalamus (VA). In six advanced PD patients undergoing surgery, microdialysis samples were collected from GPi, PUT and VA before, during and after one hour of STN-DBS. cGMP was measured in the GPi and PUT as an index of glutamatergic transmission, whereas GABA was measured in the VA. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in the VA (-25%). Simultaneously, cGMP extracellular concentrations were enhanced in the PUT (+200%) and GPi (+481%). DBS differentially affects fibers crossing the STN area: it activates the STN-GPi pathway while inhibiting the GPi-VA one. These findings support a thalamic dis-inhibition, as the main responsible for the clinical effect of STN-DBS. This, in turn, re-establishes a more physiological level of PUT activity.


Journal of Neurochemistry | 2007

Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca2+]i, initiates neurotransmitter release and promotes delayed cell death

Patricia M.W. Lam; Atticus H. Hainsworth; Graham D. Smith; Davina E. Owen; James Davies; David G. Lambert

The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand‐gated, Ca2+‐permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH‐SY5YhTRPV1). SH‐SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca2+]i with potency (EC50) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 μmol/L, respectively. The putative endovanilloid N‐arachidonoyl‐dopamine increased [Ca2+]i but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca2+]i were inhibited by the TRPV1 antagonists capsazepine and iodo‐resiniferatoxin with potencies (KB) of ∼70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre‐labelled [3H]noradrenaline from monolayers of SH‐SY5YhTRPV1 cells with an EC50 of 0.6 nmol/L indicating amplification between [Ca2+]i and release. In a perfusion system, we simultaneously measured [3H]noradrenaline release and [Ca2+]i and observed that increased [Ca2+]i preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC50 155 nmol/L) that was antagonist‐sensitive and mirrored the [Ca2+]I response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non‐neuronal cells and native neuronal cultures. The advantage of SH‐SY5YhTRPV1 is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.


Journal of Materials Chemistry | 2005

Supercritical carbon dioxide foaming of elastomer/heterocyclic methacrylate blends as scaffolds for tissue engineering

John J. A. Barry; Showan N. Nazhat; Felicity R.A.J. Rose; Atticus H. Hainsworth; Colin A. Scotchford; Steven M. Howdle

This study reports on the supercritical carbon dioxide (scCO2) foaming of rubber toughened heterocyclic methacrylates for potential applications as non-degradable scaffolds in tissue repair and engineering. Porous blends of styrene–isoprene–styrene copolymer elastomer (SIS) and tetrahydrofurfuryl methacrylate (THFMA) at three SIS/THFMA compositions that ranged from methacrylate to elastomer rich were foamed and characterised in terms of their morphological, mechanical and biological properties. The results showed that the foaming factor (FF) was dependent on blend composition and the foaming conditions demonstrating that the process was tuneable. A greater FF, resulting in higher open and total porosities, was obtained for THFMA rich formulations, which were demonstrated by a predominantly open pore structure. Quasi-static and dynamic mechanical analysis (DMA) showed that the foamed SIS/THFMA blends gave distinct behaviours according to their compositions which were in the range of mechanical properties of soft tissues. The loss modulus and mechanical loss tangent through DMA gave two transition regions associated with the glass transition temperatures of poly(THFMA) and polystyrene components in the blends, along with a reduction in storage modulus. Cell adhesion and spreading in terms of neuroblastoma (human neuron-like SH-SY5Y) cells and ovine meniscal chondrocytes were demonstrated for scaffolds with THFMA rich formulations confirming their suitability for tissue engineering.


Neuropharmacology | 2001

Effects of extracellular pH on the interaction of sipatrigine and lamotrigine with high-voltage-activated (HVA) calcium channels in dissociated neurones of rat cortex.

Atticus H. Hainsworth; Francesca Spadoni; Franco Lavaroni; Giorgio Bernardi; Alessandro Stefani

Acidic extracellular pH reduced high-voltage-activated (HVA) currents in freshly isolated cortical pyramidal neurones of adult rats, shifting activation to more positive voltages (V(1/2)=-18 mV at pH 7.4, -11 mV at pH 6.4). Sipatrigine inhibited HVA currents, with decreasing potency at acidic pH (IC(50) 8 microM at pH 7.4, 19 microM at pH 6.4) but the degree of maximal inhibition was >80% in all cases (pH 6.4-8.0). Sipatrigine has two basic groups (pK(A) values 4.2, 7.7) and at pH 7.4 is 68% in monovalent cationic form and 32% uncharged. From simple binding theory, the pH dependence of sipatrigine inhibition indicates a protonated group with pK(A) 6.6. Sipatrigine (50 microM) shifted the voltage dependence of channel activation at pH 7.4 (-7.6 mV shift) but not at pH 6.4. Lamotrigine has one basic site (pK(A) 5.5) and inhibited 34% of the HVA current, with similar potency over the pH range 6.4--7.4 (IC(50) 7.5--9 microM). These data suggest that the sipatrigine binding site on HVA calcium channels binds both cationic and neutral forms of sipatrigine, interacts with a group with pK(A)=6.6 and with the channel activation process, and differs from that for lamotrigine.


Brain Research | 2003

Pharmacology of ischemia-induced glutamate efflux from rat cerebral cortex in vitro

Rachael M Nelson; David G. Lambert; A. Richard Green; Atticus H. Hainsworth

Simulated ischemic conditions (hypoxia-hypoglycaemia) in vitro enhanced glutamate efflux from rat cerebrocortical prisms. Here we characterised efflux mechanisms using pharmacological tools. The Na(+) channel blocker TTX (1 microM) did not affect ischemia-induced efflux, while sipatrigine (100 microM), a Na(+)/Ca(2+) channel blocker and omega-conotoxin MVIIC (2 microM), an N/P/Q type Ca(2+) channel blocker, inhibited efflux by fractions of 0.53 and 0.46, respectively (1.00 corresponding to total inhibition). Omission of extracellular Ca(2+) and addition of EGTA (2 mM) inhibited ischemia-induced efflux only during the first 25 min of incubation. A similar result was observed on omission of extracellular Ca(2+) together with addition of La(3+) (10 microM) and Mg(2+) (6 mM). TTX, sipatrigine and La(3+)/Mg(2+) all inhibited control efflux. Ischemia-induced efflux was sensitive to the volume activated anion channel inhibitor NPPB (100 microM) only after the first 25 min of incubation, with the maximal fraction inhibited being 0.54. The glutamate transporter inhibitor D,L-TBOA reduced ischemia-induced efflux throughout a 45-min incubation period, and enhanced efflux from control tissue. D,L-TBOA inhibited efflux at 30 min by a maximum fraction of 0.49, at 50 microM. These data indicate that the early phase of ischemia-induced glutamate efflux is in part Ca(2+) dependent, while the later phase involves volume activated anion currents and both phases involve excitatory amino acid transporters.

Collaboration


Dive into the Atticus H. Hainsworth's collaboration.

Top Co-Authors

Avatar

Alessandro Stefani

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Francesca Spadoni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Calabresi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

A R Green

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge