Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Attila Hunyadi is active.

Publication


Featured researches published by Attila Hunyadi.


Current Medicinal Chemistry | 2008

Phytoecdysteroids and anabolic-androgenic steroids--structure and effects on humans.

Mária Báthori; Noémi Tóth; Attila Hunyadi; Árpád Márki; Ernö Zádor

Phytoecdysteroids are structural analogs of the insect molting hormone ecdysone. Plants comprise rich sources of ecdysteroids in high concentration and with broad structural diversity. Ecdysteroids have a number of proven beneficial effects on mammals but the hormonal effects of ecdysteroids have been proven only in arthropods. Their structures are somewhat similar to those of the vertebrate steroid hormones but there are several structural differences between the two steroid groups. Despite of these essential structural differences, ecdysteroids exert numerous effects in vertebrates that are similar to those of vertebrate hormonal steroids, and they may serve as effective anabolic, hepatoprotective, immunoprotective, antioxidant and hypoglycemic agents. Ecdysteroids do not bind to the cytosolic steroid receptors, instead, they are likely to influence signal transduction pathways, like the anabolic steroids, possibly via membrane bound receptors. The application of phytoecdysteroids is a promising alternative to the use of anabolic-androgenic steroids because of the apparent lack of adverse effects. The prospective use of phytoecdysteroids may extend to treatments of pathological conditions where anabolic steroids are routinely applied. One of the most cited aspects of phytoecdysteroid application (on the Internet) is the increase of muscle size. However in this field too stringent research is needed as an adequate cytological explanation is not yet available for the anabolic. This paper reports on the most important structural differences between androgenic hormones, their synthetic analogs and ecdysteroids. The anabolic/hormonal effects and the possible mechanisms of action of these compounds are also discussed as concerns the skeletal muscle.


PLOS ONE | 2012

Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats

Attila Hunyadi; Ana Martins; Tusty-Jiuan Hsieh; Adrienn B. Seres; István Zupkó

The leaves of the white mulberry tree (Morus alba L.) are used worldwide in traditional medicine as anti-diabetics. Various constituents of mulberry leaves, such as iminosugars (i.e. 1-deoxynojirimicin), flavonoids and related compounds, polysaccharides, glycopeptides and ecdysteroids, have been reported to exert anti-diabetic activity, but knowledge about their contribution to the overall activity is limited. The objective of the present work was to determine the in vivo anti-diabetic activity of an extract of mulberry leaves (MA), and to examine to what extent three major constituents, chlorogenic acid, rutin and isoquercitrin, might contribute to the observed activity. Quantities of the three constituents of interest in the extract were determined by using HPLC-DAD. Activity was determined by using a type II diabetic rat model. After 11 days of per os administration of 250 or 750 mg/kg of MA or the corresponding amounts of each individual compound, a dose dependent decrease of non-fasting blood glucose levels were found for MA, chlorogenic acid and rutin, but not for isoquercitrin. Based on our results, chlorogenic acid and rutin might account for as much as half the observed anti-diabetic activity of MA, hence they can be considered as excellent markers for the quality control of mulberry products.


The Open Microbiology Journal | 2013

Mechanisms of Resistance in Bacteria: An Evolutionary Approach

Ana Paula Martins; Attila Hunyadi; Leonard Amaral

Acquisition of resistance is one of the major causes of failure in therapy of bacterial infections. According to the World Health Organization (WHO), thousands of deaths caused by Salmonella sp., Escherichia coli, Staphylococcus aureus or Mycobacteria tuberculosis are due to failure in therapy caused by resistance to the chemotherapeutic agents. Understanding the mechanisms of resistance acquisition by the bacterial strains is therefore essential to prevent and overcome resistance. However, it is very difficult to extrapolate from in vitro studies, where the variables are far less and under constant control, as compared to what happens in vivo where the chosen chemotherapeutic, its effective dose, and the patient’s immune system are variables that differ substantially case-by-case. The aim of this review is to provide a new perspective on the possible ways by which resistance is acquired by the bacterial strains within the patient, with a special emphasis on the adaptive response of the infecting bacteria to the administered antibiotic.


Phytotherapy Research | 2013

In vitro Anti-diabetic Activity and Chemical Characterization of an Apolar Fraction of Morus alba Leaf Water Extract

Attila Hunyadi; Katalin Veres; Balázs Dankó; Zoltán Kele; Edit Wéber; Anasztázia Hetényi; István Zupkó; Tusty Jiuan Hsieh

The tea from the white mulberry (Morus alba L.) leaf is a worldwide known traditional medicine of type II diabetes. Here, we report the investigation of the dichloromethane‐soluble fraction obtained in a 0.24% m/m yield from the hot water extract of mulberry leaves. A significant, dose‐dependent activity was found by means of the 24‐h glucose consumption of fully differentiated adipocytes both in the absence and presence of insulin. The fraction was characterized by HPLC‐DAD, GC‐MS and GC‐FID. The main constituent (40.3% by means of GC‐FID) was isolated and identified as loliolide by EIMS, HRESIMS and NMR spectroscopy. In the active fraction benzyl alcohol, ethyl benzoate, t‐cinnamic acid, p‐hydroxyacetophenone, t‐coniferyl alcohol and synapil alcohol were also identified by GC‐MS and quantified by GC‐FID (0.7, 1.3, 1.5, 2.9, 7.5 and 2.6%, respectively). Copyright


PLOS ONE | 2013

Exposure of Chlorpromazine to 266 nm Laser Beam Generates New Species with Antibacterial Properties: Contributions to Development of a New Process for Drug Discovery

Mihail Lucian Pascu; Balázs Dankó; Ana Martins; Nikoletta Jedlinszki; Tatiana Alexandru; V. Nastasa; Mihai Boni; Andra Militaru; I. R. Andrei; Angela Staicu; Attila Hunyadi; Séamus Fanning; Leonard Amaral

Introduction Phenothiazines when exposed to white light or to UV radiation undergo a variety of reactions that result in degradation of parental compound and formation of new species. This process is slow and may be sped up with exposure to high energy light such as that produced by a laser. Methods Varying concentrations of Chlorpromazine Hydrochloride (CPZ) (2–20 mg/mL in distilled water) were exposed to 266 nm laser beam (time intervals: 1–24 hrs). At distinct intervals the irradiation products were evaluated by spectrophotometry between 200–1500 nm, Thin Layer Chromatography, High Pressure Liquid Chromatography (HPLC) - Diode Array Detection, HPLC tandem mass spectrometry, and for activity against the CPZ sensitive test organism Staphylococcus aureus ATCC 25923. Results CPZ exposure to 266 nm laser beam of given energy levels yielded species, whose number increased with duration of exposure. Although the major species produced were Promazine (PZ), hydroxypromazine or PZ sulfoxide, and CPZ sulfoxide, over 200 compounds were generated with exposure of 20 mg/mL of CPZ for 24 hrs. Evaluation of the irradiation products indicated that the bioactivity against the test organism increased despite the total disappearance of CPZ, that is due, most probably, to one or more new species that remain yet unidentified. Conclusions Exposure of CPZ to a high energy (6.5 mJ) 266 nm laser beam yields rapidly a large number of new and stable species. For biological grade phenothiazines (in other words knowing the impurities in the samples: solvent and solute) this process may be reproducible because one can control within reasonably low experimental errors: the concentration of the parent compound, the laser beam wavelength and average energy, as well as the duration of the exposure time. Because the process is “clean” and rapid, it may offer advantages over the pyrogenically based methods for the production of derivatives.


Molecular Cancer Therapeutics | 2012

Inhibition of ATR-Dependent Signaling by Protoapigenone and Its Derivative Sensitizes Cancer Cells to Interstrand Cross-link–Generating Agents In Vitro and In Vivo

Hui Chun Wang; Alan Yueh Luen Lee; Wen Cheng Chou; Chin Chung Wu; Chao Neng Tseng; Kevin Yen Ting Liu; Wen Lien Lin; Fang Rong Chang; Da Wei Chuang; Attila Hunyadi; Yang Chang Wu

DNA damage caused during cancer treatment can rapidly activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR)-dependent phosphorylation of Chk2 and Chk1 kinases, which are hallmarks of the DNA damage response (DDR). Pharmacologic inhibition of ATR causes a synthetic lethal effect on ATM- or p53-defective cancers, suggesting that such inhibition is an effective way to improve the sensitivity of cancers to DNA-damaging agents. Here, both the natural compound protoapigenone (WYC02) and its synthetic derivative WYC0209 exhibited cytotoxic effects on various cancer cell lines. WYC02 causes chromosomal aberration in the mitotic spreads of Chinese hamster ovary cells. Interestingly, cancer cells did not exhibit typical DDR markers upon exposure to WYC02 and WYC0209 (WYCs). Further investigation into the molecular mechanisms of WYCs function revealed that they have a potential ability to inhibit DDR, particularly on activation of Chk1 and Fanconi anemia group D2 protein (FANCD2), but not Chk2. In this way, WYCs inhibited ATR-mediated DNA damage checkpoint and repair. Furthermore, when combined with the DNA cross-linking agent cisplatin, treatment with WYCs resulted in increased tumor sensitivity to interstrand cross-link–generating agents both in vitro and in vivo. Our results therefore especially implicate WYCs in enhancing tumor chemosensitivity when the ATR checkpoint is constitutively active in states of oncogene-driven replicative stress or tolerance to DNA-interfering agents. Mol Cancer Ther; 11(7); 1443–53. ©2012 AACR.


Journal of Natural Products | 2008

26-Hydroxylated Ecdysteroids from Silene viridiflora

Noémi Tóth; András Simon; Gábor Tóth; Zoltán Kele; Attila Hunyadi; Mária Báthori

Four new 26-hydroxylated phytoecdysteroids, 2-deoxy-5,20,26-trihydroxyecdysone (1), 5,20,26-trihydroxyecdysone 20,22-acetonide (2), 2-deoxy-5,20,26-trihydroxyecdysone 20,22-acetonide (3), and 20,26-dihydroxyecdysone 20,22-acetonide (4), were isolated from the herb Silene viridiflora, and their structures were elucidated by means of one- and two-dimensional NMR and mass spectrometry.


Molecules | 2013

Synthesis and structure-activity relationships of novel ecdysteroid dioxolanes as MDR modulators in cancer.

Ana Martins; József Csábi; Attila Balázs; Diána Kitka; Leonard Amaral; József Molnár; András Simon; Gábor Tóth; Attila Hunyadi

Ecdysteroids, molting hormones of insects, can exert several mild, non-hormonal bioactivities in mammals, including humans. In a previous study, we have found a significant effect of certain derivatives on the ABCB1 transporter mediated multi-drug resistance of a transfected murine leukemia cell line. In this paper, we present a structure-activity relationship study focused on the apolar dioxolane derivatives of 20-hydroxyecdysone. Semi-synthesis and bioactivity of a total of 32 ecdysteroids, including 20 new compounds, is presented, supplemented with their complete 1H- and 13C-NMR signal assignment.


PLOS ONE | 2011

Direct Semi-Synthesis of the Anticancer Lead-Drug Protoapigenone from Apigenin, and Synthesis of Further New Cytotoxic Protoflavone Derivatives

Attila Hunyadi; Da Wei Chuang; Balázs Dankó; Michael Y. Chiang; Chia Lin Lee; Hui Chun Wang; Chin Chung Wu; Fang Rong Chang; Yang Chang Wu

Protoapigenone, a natural flavonoid possessing an unusual p-quinol moiety on its B-ring, is a novel prospective anticancer agent with low toxicity that is currently in development. The first economical, one-step synthesis of protoapigenone from apigenin is described on up to gram scale. 13 new 1′-O-alkylflavone analogs were also synthesized, either from apigenin or β-naphthoflavone. The in vitro cytotoxic activity of each compound was tested on six human cancer cell lines (HepG2, Hep3B, Ca9-22, A549, MCF-7 and MDA-MB-231). In the case of 1′-O-alkyl-protoapigenone derivatives, structure-activity relationships were found depending on the side-chain, and protoapigenone 1′-O-butyl ether was found to exert significantly stronger activity against three of the cell lines (Hep3B, MCF-7 and MDA-MB-231) than its non-substituted analog, protoapigenone itself. In contrast to this, all β-naphthoflavone derivatives bearing the same pharmacophore on their B-ring showed decreased cytotoxic activities when substituted with an O-alkyl side-chain at position 1′, comparing to that of the non-substituted compound.


Current Medicinal Chemistry | 2010

Phytoecdysteroids and Vitamin D Analogues - Similarities in Structure and Mode of Action

Noémi Tóth; Attila Hunyadi; Mária Báthori; Ernö Zádor

Phytoecdysteroids are plant steroids with identical or analogue structures to the molting hormone in arthropods. The ecdysteroids exert several beneficial effects on mammals, from which the most cited and deeply examined one is the increase of muscle size and strength. This shows similarities with the mode of action of the androgenic steroids but the ecdysteroids do not bind to the cytoplasmic/nuclear receptor of the mammalian steroids. These findings led to the hypothesis that ecdysteroids possibly bind to membrane bound receptors and they are likely to influence signal transduction pathways. Probably because of their closely related chemical structures, ecdysteroids exert some similar effects in vertebrates to those of the hormone 1 alpha,25-dihydroxyvitamin D3 (1,25D) which is produced in the kidney from 25-hydroxyvitamin D3, after being converted in the liver from Vitamin D3. 1,25D generates biological responses via both genomic and rapid, nongenomic mechanisms. Structure-activity relationship studies with different Vitamin D analogues could open the possibility to show that the two ways of action (genomic and nongenomic) can be influenced separately. The connection between the Vitamin D status and muscle function is already well-described in clinical studies, and several efforts have been made to evaluate the effect of Vitamin D deficiency or supplementation on muscle morphological changes and the underlying molecular mechanisms. This paper aims to summarize the main structural commonalities between the ecdysteroids, 1,25D and other Vitamin D analogues. The similarities in their effects and pathways that might be involved in the mechanism of action of these compounds will also be discussed.

Collaboration


Dive into the Attila Hunyadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Rong Chang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Leonard Amaral

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Yang Chang Wu

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Simon

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge