Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Attila Mócsai is active.

Publication


Featured researches published by Attila Mócsai.


Nature Reviews Immunology | 2010

The SYK tyrosine kinase: a crucial player in diverse biological functions

Attila Mócsai; Jürgen Ruland; Victor L. J. Tybulewicz

Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9–BCL-10–MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.


Nature | 2009

Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence.

Olaf Gross; Hendrik Poeck; Michael Bscheider; Catherine Dostert; Nicole Hannesschläger; Stefan Endres; Gunther Hartmann; Aubry Tardivel; Edina Schweighoffer; Victor L. J. Tybulewicz; Attila Mócsai; Jürg Tschopp; Jürgen Ruland

Fungal infections represent a serious threat, particularly in immunocompromised patients. Interleukin-1β (IL-1β) is a key pro-inflammatory factor in innate antifungal immunity. The mechanism by which the mammalian immune system regulates IL-1β production after fungal recognition is unclear. Two signals are generally required for IL-1β production: an NF-κB-dependent signal that induces the synthesis of pro-IL-1β (p35), and a second signal that triggers proteolytic pro-IL-1β processing to produce bioactive IL-1β (p17) via Caspase-1-containing multiprotein complexes called inflammasomes. Here we demonstrate that the tyrosine kinase Syk, operating downstream of several immunoreceptor tyrosine-based activation motif (ITAM)-coupled fungal pattern recognition receptors, controls both pro-IL-1β synthesis and inflammasome activation after cell stimulation with Candida albicans. Whereas Syk signalling for pro-IL-1β synthesis selectively uses the Card9 pathway, inflammasome activation by the fungus involves reactive oxygen species production and potassium efflux. Genetic deletion or pharmalogical inhibition of Syk selectively abrogated inflammasome activation by C. albicans but not by inflammasome activators such as Salmonella typhimurium or the bacterial toxin nigericin. Nlrp3 (also known as NALP3) was identified as the critical NOD-like receptor family member that transduces the fungal recognition signal to the inflammasome adaptor Asc (Pycard) for Caspase-1 (Casp1) activation and pro-IL-1β processing. Consistent with an essential role for Nlrp3 inflammasomes in antifungal immunity, we show that Nlrp3-deficient mice are hypersusceptible to Candida albicans infection. Thus, our results demonstrate the molecular basis for IL-1β production after fungal infection and identify a crucial function for the Nlrp3 inflammasome in mammalian host defence in vivo.


Journal of Cell Biology | 2002

Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton

Achim Obergfell; Koji Eto; Attila Mócsai; Charito S. Buensuceso; Sheri L. Moores; Joan S. Brugge; Clifford A. Lowell; Sanford J. Shattil

Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin αIIbβ3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in αIIbβ3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with αIIbβ3. However, fibrinogen binding caused Csk to dissociate from αIIbβ3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with αIIbβ3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to αIIbβ3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.


Immunity | 2002

Syk Is Required for Integrin Signaling in Neutrophils

Attila Mócsai; Meijuan Zhou; Fanying Meng; Victor L. J. Tybulewicz; Clifford A. Lowell

The Syk tyrosine kinase plays a critical role in the signaling machinery of various receptors of the adaptive immune system. Here we show that Syk is also an essential component of integrin signaling in neutrophils. syk(-/-) neutrophils failed to undergo respiratory burst, degranulation, or spreading in response to proinflammatory stimuli while adherent to immobilized integrin ligands or when stimulated by direct crosslinking of integrins. Signaling from the beta(1), beta(2), or beta(3) integrins was defective in syk(-/-) cells. Syk colocalized with CD18 during cell spreading and initiated downstream signaling events leading to actin polymerization. Surprisingly, these defects in integrin-mediated activation did not impair the integrin-dependent in vitro or in vivo migration of syk(-/-) neutrophils or of cells deficient in Src-family kinases. Thus, integrins use different signaling mechanisms to support migration and adherent activation.


Journal of Experimental Medicine | 2013

Diverse novel functions of neutrophils in immunity, inflammation, and beyond

Attila Mócsai

Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.


Nature Immunology | 2006

Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs

Attila Mócsai; Clare L. Abram; Zoltán Jakus; Yongmei Hu; Lewis L. Lanier; Clifford A. Lowell

At sites of inflammation, ligation of leukocyte integrins is critical for the activation of cellular effector functions required for host defense. However, the signaling pathways linking integrin ligation to cellular responses are poorly understood. Here we show that integrin signaling in neutrophils and macrophages requires adaptors containing immunoreceptor tyrosine-based activation motifs (ITAMs). Neutrophils and macrophages lacking two ITAM-containing adaptor proteins, DAP12 and FcRγ, were defective in integrin-mediated responses. Activation of the tyrosine kinase Syk by integrins required that DAP12 and FcRγ were first phosphorylated by Src family kinases. Retroviral transduction of neutrophils and macrophages with wild-type and mutant Syk or DAP12 demonstrated that the Src homology 2 domains of Syk and the ITAM of DAP12 were required for integrin signaling. Our data show that integrin signaling for the activation of cellular responses in neutrophils and macrophages proceeds by an immunoreceptor-like mechanism.


Journal of Immunology | 2000

Kinase pathways in chemoattractant-induced degranulation of neutrophils: The role of p38 mitogen-activated protein kinase activated by Src family kinases

Attila Mócsai; Zoltán Jakus; Tibor Vántus; Giorgio Berton; Clifford A. Lowell; Erzsébet Ligeti

The aim of the present study was to investigate the role of tyrosine phosphorylation pathways in fMLP-induced exocytosis of the different secretory compartments (primary and secondary granules, as well as secretory vesicles) of neutrophils. Genistein, a broad specificity tyrosine kinase inhibitor, blocked the exocytosis of primary and secondary granules, but had only a marginal effect on the release of secretory vesicles. Genistein also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPK), raising the possibility that inhibition of ERK and/or p38 MAPK might be responsible for the effect of the drug on the degranulation response. Indeed, SB203580, an inhibitor of p38 MAPK, decreased the release of primary and secondary granules, but not that of secretory vesicles. However, blocking the ERK pathway with PD98059 had no effect on any of the exocytic responses tested. PP1, an inhibitor of Src family kinases, also attenuated the release of primary and secondary granules, and neutrophils from mice deficient in the Src family kinases Hck, Fgr, and Lyn were also defective in secondary granule release. Furthermore, activation of p38 MAPK was blocked by both PP1 and the hck−/−fgr−/−lyn−/− mutation. Taken together, our data indicate that fMLP-induced degranulation of primary and secondary granules of neutrophils is mediated by p38 MAPK activated via Src family tyrosine kinases. Although piceatannol, a reportedly selective inhibitor of Syk, also prevented degranulation and activation of p38 MAPK, no fMLP-induced phosphorylation of Syk could be observed, raising doubts about the specificity of the inhibitor.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI

Jiro Kitaura; Jinming Song; Mindy Tsai; Koichi Asai; Mari Maeda-Yamamoto; Attila Mócsai; Yuko Kawakami; Fu Tong Liu; Clifford A. Lowell; B. George Barisas; Stephen J. Galli; Toshiaki Kawakami

We demonstrate that binding of different IgE molecules (IgEs) to their receptor, FcεRI, induces a spectrum of activation events in the absence of a specific antigen and provide evidence that such activation reflects aggregation of FcεRI. Highly cytokinergic IgEs can efficiently induce production of cytokines and render mast cells resistant to apoptosis in an autocrine fashion, whereas poorly cytokinergic IgEs induce these effects inefficiently. Highly cytokinergic IgEs seem to induce more extensive FcεRI aggregation than do poorly cytokinergic IgEs, which leads to stronger mast cell activation and survival effects. These effects of both types of IgEs require Syk tyrosine kinase and can be inhibited by FcεRI disaggregation with monovalent hapten. In hybridoma-transplanted mice, mucosal mast cell numbers correlate with serum IgE levels. Therefore, survival effects of IgE could contribute to the pathogenesis of allergic disease.


Journal of Experimental Medicine | 2009

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation

Kerstin Werninghaus; Anna Babiak; Olaf Groß; Christoph Hölscher; Harald Dietrich; Else Marie Agger; Jörg Mages; Attila Mócsai; Hanne Schoenen; Katrin Finger; Falk Nimmerjahn; Gordon D. Brown; Carsten J. Kirschning; Antje Heit; Peter Andersen; Hermann Wagner; Jürgen Ruland; Roland Lang

Novel vaccination strategies against Mycobacterium tuberculosis (MTB) are urgently needed. The use of recombinant MTB antigens as subunit vaccines is a promising approach, but requires adjuvants that activate antigen-presenting cells (APCs) for elicitation of protective immunity. The mycobacterial cord factor Trehalose-6,6-dimycolate (TDM) and its synthetic analogue Trehalose-6,6-dibehenate (TDB) are effective adjuvants in combination with MTB subunit vaccine candidates in mice. However, it is unknown which signaling pathways they engage in APCs and how these pathways are coupled to the adaptive immune response. Here, we demonstrate that these glycolipids activate macrophages and dendritic cells (DCs) via Syk–Card9–Bcl10–Malt1 signaling to induce a specific innate activation program distinct from the response to Toll-like receptor (TLR) ligands. APC activation by TDB and TDM was independent of the C-type lectin receptor Dectin-1, but required the immunoreceptor tyrosine-based activation motif–bearing adaptor protein Fc receptor γ chain (FcRγ). In vivo, TDB and TDM adjuvant activity induced robust combined T helper (Th)-1 and Th-17 T cell responses to a MTB subunit vaccine and partial protection against MTB challenge in a Card9-dependent manner. These data provide a molecular basis for the immunostimulatory activity of TDB and TDM and identify the Syk–Card9 pathway as a rational target for vaccine development against tuberculosis.


International Immunopharmacology | 2013

Neutrophil cell surface receptors and their intracellular signal transduction pathways

Krisztina Futosi; Szabina Fodor; Attila Mócsai

Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.

Collaboration


Dive into the Attila Mócsai's collaboration.

Top Co-Authors

Avatar

Tamás Németh

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge