Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atul J. Butte is active.

Publication


Featured researches published by Atul J. Butte.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1

Mary-Elizabeth Patti; Atul J. Butte; Sarah Crunkhorn; Kenneth Cusi; Rachele Berria; Sangeeta R. Kashyap; Yoshinori Miyazaki; Isaac S. Kohane; Maura Costello; Robert Saccone; Edwin J. Landaker; Allison B. Goldfine; Edward C. Mun; Ralph A. DeFronzo; Jean Finlayson; C. Ronald Kahn; Lawrence J. Mandarino

Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic β cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican–American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPARγ coactivator 1-α and-β (PGC1-α/PPARGC1 and PGC1-β/PERC), coactivators of NRF-1 and PPARγ-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.


Cell | 2012

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen; George Mias; Jennifer Li-Pook-Than; Lihua Jiang; Hugo Y. K. Lam; Rong Chen; Elana Miriami; Konrad J. Karczewski; Manoj Hariharan; Frederick E. Dewey; Yong Cheng; Michael J. Clark; Hogune Im; Lukas Habegger; Suganthi Balasubramanian; Maeve O'Huallachain; Joel T. Dudley; Sara Hillenmeyer; Rajini Haraksingh; Donald Sharon; Ghia Euskirchen; Phil Lacroute; Keith Bettinger; Alan P. Boyle; Maya Kasowski; Fabian Grubert; Scott Seki; Marco Garcia; Michelle Whirl-Carrillo; Mercedes Gallardo

Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.


pacific symposium on biocomputing | 1999

MUTUAL INFORMATION RELEVANCE NETWORKS: FUNCTIONAL GENOMIC CLUSTERING USING PAIRWISE ENTROPY MEASUREMENTS

Atul J. Butte; Isaac S. Kohane

Increasing numbers of methodologies are available to find functional genomic clusters in RNA expression data. We describe a technique that computes comprehensive pair-wise mutual information for all genes in such a data set. An association with a high mutual information means that one gene is non-randomly associated with another; we hypothesize this means the two are related biologically. By picking a threshold mutual information and using only associations at or above the threshold, we show how this technique was used on a public data set of 79 RNA expression measurements of 2,467 genes to construct 22 clusters, or Relevance Networks. The biological significance of each Relevance Network is explained.


PLOS Computational Biology | 2012

Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges

Purvesh Khatri; Marina Sirota; Atul J. Butte

Pathway analysis has become the first choice for gaining insight into the underlying biology of differentially expressed genes and proteins, as it reduces complexity and has increased explanatory power. We discuss the evolution of knowledge base–driven pathway analysis over its first decade, distinctly divided into three generations. We also discuss the limitations that are specific to each generation, and how they are addressed by successive generations of methods. We identify a number of annotation challenges that must be addressed to enable development of the next generation of pathway analysis methods. Furthermore, we identify a number of methodological challenges that the next generation of methods must tackle to take advantage of the technological advances in genomics and proteomics in order to improve specificity, sensitivity, and relevance of pathway analysis.


The Lancet | 2010

Clinical assessment incorporating a personal genome

Euan A. Ashley; Atul J. Butte; Matthew T. Wheeler; Rong Chen; Teri E. Klein; Frederick E. Dewey; Joel T. Dudley; Kelly E. Ormond; Aleksandra Pavlovic; Alexander A. Morgan; Dmitry Pushkarev; Norma F. Neff; Louanne Hudgins; Li Gong; Laura M. Hodges; Dorit S. Berlin; Caroline F. Thorn; Joan M. Hebert; Mark Woon; Hersh Sagreiya; Ryan Whaley; Joshua W. Knowles; Michael F. Chou; Joseph V. Thakuria; Abraham M. Rosenbaum; Alexander Wait Zaranek; George M. Church; Henry T. Greely; Stephen R. Quake; Russ B. Altman

BACKGROUND The cost of genomic information has fallen steeply, but the clinical translation of genetic risk estimates remains unclear. We aimed to undertake an integrated analysis of a complete human genome in a clinical context. METHODS We assessed a patient with a family history of vascular disease and early sudden death. Clinical assessment included analysis of this patients full genome sequence, risk prediction for coronary artery disease, screening for causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods for the integration of whole genome and clinical risk. Disease and risk analysis focused on prediction of genetic risk of variants associated with mendelian disease, recognised drug responses, and pathogenicity for novel variants. We queried disease-specific mutation databases and pharmacogenomics databases to identify genes and mutations with known associations with disease and drug response. We estimated post-test probabilities of disease by applying likelihood ratios derived from integration of multiple common variants to age-appropriate and sex-appropriate pre-test probabilities. We also accounted for gene-environment interactions and conditionally dependent risks. FINDINGS Analysis of 2.6 million single nucleotide polymorphisms and 752 copy number variations showed increased genetic risk for myocardial infarction, type 2 diabetes, and some cancers. We discovered rare variants in three genes that are clinically associated with sudden cardiac death-TMEM43, DSP, and MYBPC3. A variant in LPA was consistent with a family history of coronary artery disease. The patient had a heterozygous null mutation in CYP2C19 suggesting probable clopidogrel resistance, several variants associated with a positive response to lipid-lowering therapy, and variants in CYP4F2 and VKORC1 that suggest he might have a low initial dosing requirement for warfarin. Many variants of uncertain importance were reported. INTERPRETATION Although challenges remain, our results suggest that whole-genome sequencing can yield useful and clinically relevant information for individual patients. FUNDING National Institute of General Medical Sciences; National Heart, Lung And Blood Institute; National Human Genome Research Institute; Howard Hughes Medical Institute; National Library of Medicine, Lucile Packard Foundation for Childrens Health; Hewlett Packard Foundation; Breetwor Family Foundation.


Bioinformatics | 2002

Analysis of matched mRNA measurements from two different microarray technologies

Winston Patrick Kuo; Tor Kristian Jenssen; Atul J. Butte; Lucila Ohno-Machado; Isaac S. Kohane

MOTIVATION [corrected] The existence of several technologies for measuring gene expression makes the question of cross-technology agreement of measurements an important issue. Cross-platform utilization of data from different technologies has the potential to reduce the need to duplicate experiments but requires corresponding measurements to be comparable. METHODS A comparison of mRNA measurements of 2895 sequence-matched genes in 56 cell lines from the standard panel of 60 cancer cell lines from the National Cancer Institute (NCI 60) was carried out by calculating correlation between matched measurements and calculating concordance between cluster from two high-throughput DNA microarray technologies, Stanford type cDNA microarrays and Affymetrix oligonucleotide microarrays. RESULTS In general, corresponding measurements from the two platforms showed poor correlation. Clusters of genes and cell lines were discordant between the two technologies, suggesting that relative intra-technology relationships were not preserved. GC-content, sequence length, average signal intensity, and an estimator of cross-hybridization were found to be associated with the degree of correlation. This suggests gene-specific, or more correctly probe-specific, factors influencing measurements differently in the two platforms, implying a poor prognosis for a broad utilization of gene expression measurements across platforms.


Nature Reviews Drug Discovery | 2002

THE USE AND ANALYSIS OF MICROARRAY DATA

Atul J. Butte

Functional genomics is the study of gene function through the parallel expression measurements of genomes, most commonly using the technologies of microarrays and serial analysis of gene expression. Microarray usage in drug discovery is expanding, and its applications include basic research and target discovery, biomarker determination, pharmacology, toxicogenomics, target selectivity, development of prognostic tests and disease-subclass determination. This article reviews the different ways to analyse large sets of microarray data, including the questions that can be asked and the challenges in interpreting the measurements.


Science Translational Medicine | 2011

Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data

Marina Sirota; Joel T. Dudley; Jeewon Kim; Annie P. Chiang; Alex A. Morgan; Alejandro Sweet-Cordero; Julien Sage; Atul J. Butte

A systematic computational method predicts new uses for existing drugs by integrating public gene expression signatures of drugs and diseases. Greening Drug Discovery Recycling is good for the environment—and for drug development too. Repurposing existing, approved drugs can speed their adoption in the clinic because they can often take advantage of the existing rigorous safety testing required by the Food and Drug Administration and other regulatory agencies. In a pair of papers, Sirota et al. and Dudley et al. examined publicly available gene expression data and determined the genes affected in 100 diseases and 164 drugs. By pairing drugs that correct abnormal gene expression in diseases, they confirm known effective drug-disease pairs and predict new indications for already approved agents. Experimental validation that an antiulcer drug and an antiepileptic can be reused for lung cancer and inflammatory bowel disease reinforces the promise of this approach. The authors scrutinized the data in Gene Expression Omnibus and identified a disease signature for 100 diseases, which they defined as the set of mRNAs that reliably increase or decrease in patients with that disease compared to normal individuals. They compared each of these disease signatures to each of the gene expression signatures for 164 drugs from the Connectivity Map, a collection of mRNA expression data from cultured human cells treated with bioactive small molecules that is maintained at the Broad Institute at Massachusetts Institute of Technology. A similarity score calculated by the authors for every possible pair of drug and disease ranged from +1 (a perfect correlation of signatures) to −1 (exactly opposite signatures). The investigators suggested that a similarity score of −1 would predict that the drug would ameliorate the abnormalities in the disease and thus be an effective therapy. This proved to be true for a number of drugs already on the market. The corticosteroid prednisolone, a common treatment for Crohn’s disease and ulcerative colitis, showed a strong similarity score for these two diseases. The histone deacetylase inhibitors trichostatin A, valproic acid, and vorinostat were predicted to work against brain tumors and other cancers (esophagus, lung, and colon), and there is experimental evidence that this is indeed the case. But in the ultimate test of method, the authors confirmed two new predictions in animal experiments: Cimetidine, an antiulcer drug, predicted by the authors to be effective against lung cancer, inhibited tumor cells in vitro and in vivo in mice. In addition, the antiepileptic topiramate, predicted to improve inflammatory bowel disease by similarity score, improved damage in colon tissue of rats treated with trinitrobenzenesulfonic acid, a model of the disease. These two drugs are therefore good candidates for recycling to treat two diseases in need of better therapies—lung cancer and inflammatory bowel disease—and we now have a way to mine available data for fast routes to new disease therapies. The application of established drug compounds to new therapeutic indications, known as drug repositioning, offers several advantages over traditional drug development, including reduced development costs and shorter paths to approval. Recent approaches to drug repositioning use high-throughput experimental approaches to assess a compound’s potential therapeutic qualities. Here, we present a systematic computational approach to predict novel therapeutic indications on the basis of comprehensive testing of molecular signatures in drug-disease pairs. We integrated gene expression measurements from 100 diseases and gene expression measurements on 164 drug compounds, yielding predicted therapeutic potentials for these drugs. We recovered many known drug and disease relationships using computationally derived therapeutic potentials and also predict many new indications for these 164 drugs. We experimentally validated a prediction for the antiulcer drug cimetidine as a candidate therapeutic in the treatment of lung adenocarcinoma, and demonstrate its efficacy both in vitro and in vivo using mouse xenograft models. This computational method provides a systematic approach for repositioning established drugs to treat a wide range of human diseases.


Nature Biotechnology | 2011

Performance comparison of exome DNA sequencing technologies

Michael J. Clark; Rui Chen; Hugo Y. K. Lam; Konrad J. Karczewski; Rong Chen; Ghia Euskirchen; Atul J. Butte; Michael Snyder

Whole exome sequencing by high-throughput sequencing of target-enriched genomic DNA (exome-seq) has become common in basic and translational research as a means of interrogating the interpretable part of the human genome at relatively low cost. We present a comparison of three major commercial exome sequencing platforms from Agilent, Illumina and Nimblegen applied to the same human blood sample. Our results suggest that the Nimblegen platform, which is the only one to use high-density overlapping baits, covers fewer genomic regions than the other platforms but requires the least amount of sequencing to sensitively detect small variants. Agilent and Illumina are able to detect a greater total number of variants with additional sequencing. Illumina captures untranslated regions, which are not targeted by the Nimblegen and Agilent platforms. We also compare exome sequencing and whole genome sequencing (WGS) of the same sample, demonstrating that exome sequencing can detect additional small variants missed by WGS.


Cell Stem Cell | 2009

FoxO3 Regulates Neural Stem Cell Homeostasis

Valérie M. Renault; Victoria A. Rafalski; Alex A. Morgan; Dervis A.M. Salih; Jamie O. Brett; Ashley E. Webb; Saul A. Villeda; Pramod U. Thekkat; Camille Guillerey; Nicholas C. Denko; Theo D. Palmer; Atul J. Butte; Anne Brunet

In the nervous system, neural stem cells (NSCs) are necessary for the generation of new neurons and for cognitive function. Here we show that FoxO3, a member of a transcription factor family known to extend lifespan in invertebrates, regulates the NSC pool. We find that adult FoxO3(-/-) mice have fewer NSCs in vivo than wild-type counterparts. NSCs isolated from adult FoxO3(-/-) mice have decreased self-renewal and an impaired ability to generate different neural lineages. Identification of the FoxO3-dependent gene expression profile in NSCs suggests that FoxO3 regulates the NSC pool by inducing a program of genes that preserves quiescence, prevents premature differentiation, and controls oxygen metabolism. The ability of FoxO3 to prevent the premature depletion of NSCs might have important implications for counteracting brain aging in long-lived species.

Collaboration


Dive into the Atul J. Butte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Sirota

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Bin Chen

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge