Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atul Pathak is active.

Publication


Featured researches published by Atul Pathak.


Biotechnology Journal | 2009

Recent trends in non-viral vector-mediated gene delivery.

Atul Pathak; Soma Patnaik; Kailash C. Gupta

Nucleic acids‐based next generation biopharmaceuticals (i.e., pDNA, oligonucleotides, short interfering RNA) are potential pioneering materials to cope with various incurable diseases. However, several biological barriers present a challenge for efficient gene delivery. On the other hand, developments in nanotechnology now offer numerous non‐viral vectors that have been fabricated and found capable of transmitting the biopharmaceuticals into the cell and even into specific subcellular compartments like mitochondria. This overview illustrates cellular barriers and current status of non‐viral gene vectors, i.e., lipoplexes, liposomes, polyplexes, and nanoparticles, to relocate therapeutic DNA‐based nanomedicine into the target cell. Despite the awesome impact of physical methods (i.e., ultrasound, electroporation), chemical methods have been shown to accomplish high‐level and safe transgene expression. Further comprehension of barriers and the mechanism of cellular uptake will facilitate development of nucleic acids‐based nanotherapy for alleviation of various disorders.


ACS Nano | 2009

Gene Expression, Biodistribution, and Pharmacoscintigraphic Evaluation of Chondroitin Sulfate−PEI Nanoconstructs Mediated Tumor Gene Therapy

Atul Pathak; Pradeep Kumar; Krishna Chuttani; Sanyog Jain; Anil K. Mishra; Suresh P. Vyas; Kailash C. Gupta

Tumor-specific gene delivery constitutes a primary challenge in nonviral mediated gene therapy. In this investigation, branched polyethylenimine (bPEI, 25 kDa) was modified by forming nanoconstructs with a natural polysaccharide, chondroitin sulfate (CS), to impart site-specific property. A library of CS-PEI (CP) nanoconstructs was fabricated by altering the content of CS and evaluated in terms of size, surface charge, morphology, pDNA loading efficiency, pDNA release assay, pDNA protection study, cytotoxicity, and transfection efficiency. In vitro transfection efficiency of CP nanoconstructs was examined in HEK293, HEK293T, HepG2, and HeLa cell lines, while their cytotoxicity was investigated in HepG2 and HeLa cells. DNase I protection assay showed that the plasmid was protected from degradation over a period of time. The CP nanoconstructs possess significantly lower toxicity and enhanced transfection efficiency compared to PEI (25 kDa) and commercial transfection reagents (i.e., superfect, fugene, and GenePORTER 2). Further, the CP nanoconstructs were also found to transfect cells in serum-containing medium. In vivo studies were carried out with pDNA loaded CP-3 nanoconstruct after intravenous (iv) injection in Ehrlich ascites tumor (EAT)-bearing mice. The outcome revealed higher concentration of CP-3 nanoconstruct in tumor mass. These findings demonstrate that CP nanoconstructs could be exploited as carriers for nanomedicine for efficient management of solid tumor.


International Journal of Pharmaceutics | 2007

Imidazolyl-PEI modified nanoparticles for enhanced gene delivery.

Archana Swami; Anita Aggarwal; Atul Pathak; Soma Patnaik; Pradeep Kumar; Yogendra Singh; K.C. Gupta

The derivatives of polyethylenimine (PEI 25 and 750kDa) were synthesized by partially substituting their amino groups with imidazolyl moieties. The series of imidazolyl-PEIs thus obtained were cross-linked with polyethylene glycol (PEG) to get imidazolyl-PEI-PEG nanoparticles (IPP). The component of hydrophobicity was introduced by grafting the lauryl groups in the maximal substituted IPP nanoparticles (IPPL). The nanoparticles were characterized with respect to DNA interaction, hydrodynamic diameter, zeta potential, in vitro cytotoxicity and transfection efficiency on model cell lines. The IPP and IPPL nanoparticles formed a loose complex with DNA compared to the corresponding native PEI, leading to more efficient unpackaging of DNA. The DNA loading capacity of IPP and IPPL nanoparticles was also lower compared to PEI. The imidazolyl substitution improved the gene delivery efficiency of PEI (750kDa) by nine- to ten-fold and PEI (25kDa) by three- to four-fold. At maximum transfection efficiency, the zeta potential of nanoparticles was positive after forming a complex with DNA. The maximum level of reporter gene expression was mediated by IPPL nanoparticles in both the series. The cytotoxicity, another pertinent problem with cationic polymers, was also negligible in case of IPP and IPPL nanoparticles.


International Journal of Nanomedicine | 2008

Nano-vectors for efficient liver specific gene transfer

Atul Pathak; Suresh P. Vyas; Kailash C. Gupta

Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future.


Pharmaceutical Research | 2007

Engineered Polyallylamine Nanoparticles for Efficient In Vitro Transfection

Atul Pathak; Anita Aggarwal; Raj K. Kurupati; Soma Patnaik; Archana Swami; Yogendra Singh; Pradeep Kumar; Suresh P. Vyas; Kailash C. Gupta

PurposeCationic polymers (i.e. polyallylamine, poly-L-lysine) having primary amino groups are poor transfection agents and possess high cytotoxicity index when used without any chemical modification and usually entail specific receptor mediated endocytosis or lysosomotropic agents to execute efficient gene delivery. In this report, primary amino groups of polyallylamine (PAA, 17xa0kDa) were substituted with imidazolyl functions, which are presumed to enhance endosomal release, and thus enhance its gene delivery efficiency and eliminate the requirement of external lysosomotropic agents. Further, systems were cross-linked with polyethylene glycol (PEG) to prepare PAA-IAA-PEG (PIP) nanoparticles and evaluated them in various model cell lines.Materials and MethodsThe efficacy of PIP nanoparticles in delivering a plasmid encoding enhanced green fluorescent protein (EGFP) gene was assessed in COS-1, N2a and HEK293 cell lines, while their cytotoxicity was investigated in COS-1 and HEK293 cell lines. The PAA was chemically modified using imidazolyl moieties and ionically cross-linked with PEG to engineer nanoparticles. The extent of substitution was determined by ninhydrin method. The PIP nanoparticles were further characterized by measuring the particle size (dynamic light scattering and transmission electron microscopy), surface charge (zeta potential), DNA accessibility and buffering capacity. The cytotoxicity was examined using the MTT method.ResultsIn vitro transfection efficiency of synthesized nanoparticles is increased up to several folds compared to native polymer even in the presence of serum, while maintaining the cell viability over 100% in COS-1 cells. Nanoparticles possess positive zeta potential between 5.6–13xa0mV and size range of 185–230xa0nm in water. The accessibility experiment demonstrated that nanoparticles with higher degree of imidazolyl substitution formed relatively loose complexes with DNA. An acid-base titration showed enhanced buffering capacity of modified PAA.ConclusionsThe PIP nanoparticles reveal tremendous potential as novel delivery system for achieving improved transfection efficiency, while keeping the cells at ease.


International Journal of Pharmaceutics | 2010

PEI-alginate nanocomposites: Efficient non-viral vectors for nucleic acids

Soma Patnaik; Mohammed Arif; Atul Pathak; Naresh Singh; K.C. Gupta

Branched polyethylenimine (PEI, 25 kDa) was ionically interacted with varying amount of alginic acid to block different proportion (2.6-5.7%) of amines in PEI to form a series of nanocomposites, PEI-Al. These nanocomposites, upon interaction with DNA, protected it against DNase I. Among various complexes evaluated, PEI-Al(4.8%)/DNA displayed the highest transfection efficiency in HEK293, COS-1 and HeLa cells that was approximately 2-8-folds higher than Superfect, Fugene, PEI (750 kDa)-Al(6.26%) and PEI alone. The projected nanocomposites were nearly non-toxic to cells in vitro. Furthermore, the concentration of PEI-Al(4.8%) needed to deliver GFP-specific siRNA in COS-1 cells was 20 times lower than PEI (750 kDa)-Al(6.26%). Intracellular trafficking of PEI-Al(4.8%) with or without complexed DNA in HeLa cells shows that both appear in the nucleus after 1 h.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics.

Soma Patnaik; Mohammad Arif; Atul Pathak; Raj K. Kurupati; Yogendra Singh; Kailash C. Gupta

UNLABELLEDnBranched polyethylenimine (PEI; 25 kDa) as a nonviral vector exhibits high transfection efficiency and is a potential candidate for efficient gene delivery. However, the cytotoxicity of PEI limits its application in vivo. PEI was ionically interacted with hexametaphosphate, a compact molecule with high anionic charge density, to obtain nanoparticles (PEI-HMP). Nanoparticles were assessed for their efficacy in protecting complexed DNA against nucleases. The intracellular trafficking of nanoparticles was monitored by confocal microscopy. The cytotoxicity and transfection efficiency of PEI-HMP nanoparticles were evaluated in vitro. In vitro transfection efficiency of PEI-HMP (7.7%) was approximately 1.3- to 6.4-folds higher than that of the commercial reagents GenePORTER 2, Fugene, and Superfect. Also, PEI-HMP (7.7%) delivered green fluorescent protein (GFP)-specific small interfering ribonucleic acid (siRNA) in culture cells leading to >80% suppression in GFP gene expression. PEI-HMP nanoparticles protected complexed DNA against DNase for at least 2 hours. A time-course uptake of PEI-HMP (7.7%) nanoparticles showed the internalization of nanoparticles inside the cell nucleus in 2 hours. Thus, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as nonviral vectors for gene delivery.nnnFROM THE CLINICAL EDITORnBranched polyethylenimine (PEI) as a non-viral vector exhibits high transfection efficiency for gene delivery, but its cytotoxicity limits its applications. PEI hexametaphosphate nanoparticles (PEI-HMP) demonstrated a 1.3-6.4 folds higher transfection rate compared to commercial reagents. Overall, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as non-viral vectors for gene delivery.


Current Hypertension Reports | 2016

Device-based Therapy for Hypertension.

Fu Liang Ng; Manish Saxena; Felix Mahfoud; Atul Pathak; Melvin D. Lobo

Hypertension continues to be a major contributor to global morbidity and mortality, fuelled by an abundance of patients with uncontrolled blood pressure despite the multitude of pharmacological options available. This may occur as a consequence of true resistant hypertension, through an inability to tolerate current pharmacological therapies, or non-adherence to antihypertensive medication. In recent years, there has been a rapid expansion of device-based therapies proposed as novel non-pharmacological approaches to treating resistant hypertension. In this review, we discuss seven novel devices—renal nerve denervation, baroreflex activation therapy, carotid body ablation, central iliac arteriovenous anastomosis, deep brain stimulation, median nerve stimulation, and vagal nerve stimulation. We highlight how the devices differ, the varying degrees of evidence available to date and upcoming trials. This review also considers the possible factors that may enable appropriate device selection for different hypertension phenotypes.


European Heart Journal | 2016

Interventional procedures and future drug therapy for hypertension

Melvin D. Lobo; Paul A. Sobotka; Atul Pathak

Hypertension management poses a major challenge to clinicians globally once non-drug (lifestyle) measures have failed to control blood pressure (BP). Although drug treatment strategies to lower BP are well described, poor control rates of hypertension, even in the first world, suggest that more needs to be done to surmount the problem. A major issue is non-adherence to antihypertensive drugs, which is caused in part by drug intolerance due to side effects. More effective antihypertensive drugs are therefore required which have excellent tolerability and safety profiles in addition to being efficacious. For those patients who either do not tolerate or wish to take medication for hypertension or in whom BP control is not attained despite multiple antihypertensives, a novel class of interventional procedures to manage hypertension has emerged. While most of these target various aspects of the sympathetic nervous system regulation of BP, an additional procedure is now available, which addresses mechanical aspects of the circulation. Most of these new devices are supported by early and encouraging evidence for both safety and efficacy, although it is clear that more rigorous randomized controlled trial data will be essential before any of the technologies can be adopted as a standard of care.


Biochemical and Biophysical Research Communications | 2007

A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles

Archana Swami; Raj K. Kurupati; Atul Pathak; Yogendra Singh; Pradeep Kumar; K.C. Gupta

Collaboration


Dive into the Atul Pathak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pradeep Kumar

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh P. Vyas

Dr. Hari Singh Gour University

View shared research outputs
Top Co-Authors

Avatar

Pradeep Kumar

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Anil K. Mishra

Indian Institute of Technology Guwahati

View shared research outputs
Researchain Logo
Decentralizing Knowledge