Atul Rawat
Sanjay Gandhi Post Graduate Institute of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atul Rawat.
Journal of Ethnopharmacology | 2016
Amit K Keshari; Ghanendra Kumar; Priya Singh Kushwaha; Monika Bhardwaj; Pranesh Kumar; Atul Rawat; Dinesh Kumar; Anand Prakash; Balaram Ghosh; Sudipta Saha
ETHNOPHARMACOLOGICAL RELEVANCE Ficus racemosa (FR) has been used for thousands of years in Ayurvedic system of medicine in India and is closely associated with prevention, treatment and cure of various human ailments like obesity and diabetes. It is popularly known as gular. A vast and wide range of chemical compounds like polyphenols, friedelane-type triterpenes, norfriedelane type triterpene, eudesmane-type sesquiterpene including various glycosides had been isolated from this plant. However, no detail studies related to isolation of flavonoids has been reported previously with their antidiabetic, hypolipidemic and toxicological consequences. AIM OF THE STUDY The present study was undertaken to evaluate antidiabetic, hypolipidemic and toxicological assessments of flavonoids isolated from Ficus racemosa (FR) stem bark. MATERIALS AND METHODS We isolated four flavonoids from stem bark of FR and structures were confirmed by Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR) (both 1D and 2D), mass spectroscopy (MS). Later, these flavonoids were administered to streptozotocin (STZ) rats once in a day for a period of seven days at 100mg/kg dose. We measured blood glucose level and body weight changes at different days (1st, 3rd, 5th and 7th days). Serum lipid profiles were also estimated to investigate the hypolipidemic potential of flavonoids in the similar experiment. Various oxidative stress parameters in pancreas and liver and hepatic biomarker enzymes in plasma were also determined to investigate the toxicity potential of isolated flavonoids. Finally, we performed docking studies to find out the mechanism of action. RESULTS Our results collectively suggested that four flavonoids reduced blood glucose level and restored body weight, signifying antidiabetic action. There were reduction of other lipid profile parameters and increase of high density lipoprotein (HDL) during administration of flavonoids, also signifying hypolipidemic action. Various oxidative stress biomarkers and hepatic enzymes levels were also normalized with respect to diabetic control at the same time. Docking studies revealed that isolated flavonoids showed their antidiabetic potential via binding to PPARγ and GLUT1 receptors. CONCLUSION The isolated four flavonoids demonstrated good antidiabetic, hypolipidemic and antioxidant properties in STZ diabetic rats which supported the use of FR stem bark as useful supplementary drug for future antidiabetic therapy.
Magnetic Resonance in Chemistry | 2014
Anupam Guleria; Nitin Kumar Bajpai; Atul Rawat; Chunni Lal Khetrapal; Narayan Prasad; Dinesh Kumar
Metabolite analysis of peritoneal dialysis (PD) effluent may provide information regarding onset and progression of complications associated with prolonged PD therapy. In this context, the nuclear magnetic resonance detectable small metabolites of PD effluent samples were characterised using high‐resolution 1H and 1H–13C NMR spectroscopy. The various spectra were recorded (at 800 MHz proton frequency) on PD effluent samples obtained after 4‐h (intraperitoneal) dwell time from patients with end‐stage renal failure and continuing normally on PD therapy. In spite of devastating spectral feature of PD effluent due to the presence of intense resonances from glucose and lactate, we were able to identify 53 small endogenous metabolites (including many complex coupled spin systems) and more than 90% of the total CH cross peaks of 1H–13C heteronuclear single‐quantum correlation spectrum specific to various metabolites of PD effluent. We foresee that the characteristic fingerprints of various metabolites of control PD effluent samples will be used to identify and distinguish metabolic differences from PD‐related complications. Copyright
Journal of Proteome Research | 2015
Anupam Guleria; Durga Prasanna Misra; Atul Rawat; Durgesh Dubey; Chunni Lal Khetrapal; P. A. Bacon; Ramnath Misra; Dinesh Kumar
Takayasu arteritis (TA) is a debilitating, systemic disease that involves the aorta and large arteries in a chronic inflammatory process that leads to vessel stenosis. Initially, the disease remains clinically silent (or remains undetected) until the patients present with vascular occlusion. Therefore, new methods for appropriate and timely diagnosis of TA cases are needed to start proper therapy on time and also to monitor the patients response to the given treatment. In this context, NMR-based serum metabolomic profiling has been explored in this proof-of-principle study for the first time to determine characteristic metabolites that could be potentially helpful for diagnosis and prognosis of TA. Serum metabolic profiling of TA patients (n = 29) and healthy controls (n = 30) was performed using 1D (1)H NMR spectroscopy, and possible biomarker metabolites were identified. Using projection to least-squares discriminant analysis, we could distinguish TA patients from healthy controls. Compared to healthy controls, TA patients had (a) increased serum levels of choline metabolites, LDL cholesterol, N-acetyl glycoproteins (NAGs), and glucose and (b) decreased serum levels of lactate, lipids, HDL cholesterol, and glucogenic amino acids. The results of this study are preliminary and need to be confirmed in a prospective study.
Scientific Reports | 2016
Anupam Guleria; Avadhesh Pratap; Durgesh Dubey; Atul Rawat; Smriti Chaurasia; Edavalath Sukesh; Sanat Phatak; Sajal Ajmani; Umesh Kumar; Chunni Lal Khetrapal; P. A. Bacon; Ramnath Misra; Dinesh Kumar
Management of patient with Lupus Nephritis (LN) continues to remain a challenge for the treating physicians because of considerable morbidity and even mortality. The search of biomarkers in serum and urine is a focus of researchers to unravel new targets for therapy. In the present study, the utility of NMR-based serum metabolomics has been evaluated for the first time in discriminating LN patients from non-nephritis lupus patients (SLE) and further to get new insights into the underlying disease processes for better clinical management. Metabolic profiling of sera obtained from 22 SLE patients, 40 LN patients and 30 healthy controls (HC) were performed using high resolution 1D 1H-CPMG and diffusion edited NMR spectra to identify the potential molecular biomarkers. Using multivariate analysis, we could distinguish SLE and LN patients from HC and LN from SLE patients. Compared to SLE patients, the LN patients had increased serum levels of lipid metabolites (including LDL/VLDL lipoproteins), creatinine and decreased levels of acetate. Our results revealed that metabolic markers especially lipids and acetate derived from NMR spectroscopy has high sensitivity and specificity to distinguish LN among SLE patients and has the potential to be a useful adjunctive tool in diagnosis and clinical management of LN.
Oncotarget | 2017
Subhadeep Roy; Atul Rawat; Shreesh Raj Sammi; Uma Devi; Manjari Singh; Swetlana Gautam; Rajnish Kumar Yadav; Jitendra K. Rawat; Lakhveer Singh; Mohd. Nazam Ansari; Abdulaziz S. Saeedan; Rakesh Pandey; Dinesh Kumar; Gaurav Kaithwas
Alpha linolenic acid is an essential polyunsaturated fatty acid and is reported to have the anti-cancer potential with no defined hypothesis or mechanism/s. Henceforth present study was in-quested to validate the effect of alpha linolenic acid on mitochondrial apoptosis, hypoxic microenvironment and de novo fatty acid synthesis using in-vitro and in-vivo studies. The IC50 value of alpha linolenic acid was recorded to be 17.55μM against ER+MCF-7 cells. Treatment with alpha linolenic acid was evident for the presence of early and late apoptotic signals along with mitochondrial depolarization, when studied through acridine orange/ethidium bromide and JC-1 staining. Alpha linolenic acid arrested the cell cycle in G2/M phase. Subsequently, the in-vivo efficacy was examined against 7, 12-dimethylbenz anthracene induced carcinogenesis. Treatment with alpha linolenic acid demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count, restoration of the histopathological architecture and loss of tumor micro vessels. Alpha linolenic acid restored the metabolic changes to normal when scrutinized through 1H NMR studies. The immunoblotting and qRT-PCR studies revealed participation of mitochondrial mediated death apoptosis pathway and curtailment of hypoxic microenvironment after treatment with alpha linolenic acid. With all above, it was concluded that alpha linolenic acid mediates mitochondrial apoptosis, curtails hypoxic microenvironment along with inhibition of de novo fatty acid synthesis to impart anticancer effects.
Natural Product Research | 2016
Pranesh Kumar; Atul Rawat; Amit K Keshari; Ashok K. Singh; Siddhartha Maity; Arnab De; Amalesh Samanta; Sudipta Saha
The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.
Journal of Peptide Science | 2013
Atul Rawat; Dinesh Kumar
Backbone dynamics and conformational properties of drug peptide salmon calcitonin have been studied in aqueous solution using nuclear magnetic resonance (NMR). Although salmon calcitonin (sCT) is largely unfolded in solution (as has been reported in several circular dichroism studies), the secondary Hα chemical shifts and three bond HN–Hα coupling constants indicated that most of the residues of the peptide are populating the α‐helical region of the Ramachandran (ϕ, ψ) map. Further, the peptide in solution has been found to exhibit multiple conformational states exchanging slowly on the NMR timescale (102–103 s−1), inferred by the multiple chemical shift assignments in the region Leu4–Leu12 and around Pro23 (for residues Gln20–Tyr22 and Arg24). Possibly, these slowly exchanging multiple conformational states might inhibit symmetric self‐association of the peptide and, in part, may account for its reduced aggregation propensity compared with human calcitonin (which lacks this property). The 15N NMR‐relaxation data revealed (i) the presence of slow (microsecond‐to‐millisecond) timescale dynamics in the N‐terminal region (Cys1–Ser5) and core residues His17 and Asn26 and (ii) the presence of high frequency (nanosecond‐to‐picosecond) motions in the C‐terminal arm. Put together, the various results suggested that (i) the flexible C‐terminal of sCT (from Thr25–Thr31) is involved in identification of specific target receptors, (ii) whereas the N‐terminal of sCT (from Cys1–Gln20) in solution – exhibiting significant amount of conformational plasticity and strong bias towards biologically active α‐helical structure – facilitates favorable conformational adaptations while interacting with the intermembrane domains of these target receptors. Thus, we believe that the structural and dynamics features of sCT presented here will be useful guiding attributes for the rational design of biologically active sCT analogs. Copyright
Cancer Biology & Therapy | 2017
Anil Kumar Sahdev; Vinit Raj; Ashok K. Singh; Amit Rai; Amit K Keshari; Arnab De; Amalesh Samanta; Umesh Kumar; Atul Rawat; Dinesh Kumar; Sneha Nath; Anand Prakash; Sudipta Saha
ABSTRACT Pyrazinoic acid (PA) is structurally similar to nicotinic acid which acts on G-protein-coupled receptor (GPR109A). GPR109A expresses in colonic and intestinal epithelial sites, and involves in DNA methylation and cellular apoptosis. Therefore, it may be assumed that PA has similar action like nicotinic acid and may be effective against colorectal carcinoma (CRC). CRC was produced via subcutaneous injection of dimethylhydrazine (DMH) at 40 mg/kg body weight once in a week for 4 weeks. After that, PA was administered orally at 2 doses of 10 and 25 mg/kg daily for 15 d to observe the antiproliferative effect. Various physiologic, oxidative stress, molecular parameters, histopathology, RT-PCR and NMR based metabolomics were performed to evaluate the antiproliferative potential of PA. Our results collectively suggested that PA reduced body weight, tumor volume and incidence no. to normal. It restored various oxidative stress parameters and normalized IL-2, IL-6, and COX-2 as compared with carcinogen control. In molecular level, overexpressed IL-6 and COX-2 genes became normal after PA administration. Again, normal tissue architecture was prominent after PA administration. Score plots of PLS-DA models exhibited that PA treated groups were significantly different from CRC group. We found that CRC rat sera have increased levels of acetate, glutamine, o-acetyl-glycoprotein, succinate, citrulline, choline, o-acetyl choline, tryptophan, glycerol, creatinine, lactate, citrate and decreased levels of 3-hydroxy butyrate, dimethyl amine, glucose, maltose, myoinositol. Further the PA therapy has ameliorated the CRC-induced metabolic alterations, signifying its antiproliferative properties. In conclusion, our study provided the evidence that PA demonstrated good antiproliferative effect on DMH induced CRC and thus demonstrated the potential of PA as a useful drug for future anticancer therapy.
Human & Experimental Toxicology | 2018
Atul Rawat; Swati Chaturvedi; Ashok K. Singh; Anupam Guleria; Durgesh Dubey; Amit K Keshari; Vinit Raj; Amit Rai; Anand Prakash; Umesh Kumar; Dinesh Kumar; Sudipta Saha
Pyrazinamide (PYZ)—an essential component of primary drug regimen used for the treatment and management of multidrug resistant or latent tuberculosis—is well known for its hepatoxicity. However, the mechanism of PYZ-induced hepatotoxicity is still unknown to researchers. Studies have shown that the drug is metabolized in the liver to pyrazinoic acid (PA) and 5-hydroxy pyrazinoic acid (5-OHPA) which individually may cause different degrees of hepatotoxicity. To evaluate this hypothesis, PYZ, PA, and 5-OHPA were administered to albino Wistar rats orally (respectively, at 250, 125, and 125 mg kg−1 for 28 days). Compared to normal rats, PYZ and its metabolic products decreased the weights of dosed rats and induced liver injury and a status of oxidative stress as assessed by combined histopathological and biochemical analysis. Compared to normal controls, the biochemical and morphological changes were more aberrant in PA- and 5-OHPA-dosed rats with respect to those dosed with PYZ. Finally, the serum metabolic profiles of rats dosed with PYZ, PA, and 5-OHPA were measured and compared with those of normal control rats. With respect to normal control rats, the rats dosed with PYZ and 5-OHPA showed most aberrant metabolic perturbations in their sera as compared to those dosed with PA. Altogether, the study suggests that PYZ-induced hepatotoxicity might be associated with its metabolized products, where 5-OHPA contributes to a higher degree in its overall toxicity than PA.
Journal of Pharmacy and Bioallied Sciences | 2016
Atul Rawat; Durgesh Dubey; Anupam Guleria; Umesh Kumar; Amit K Keshari; Swati Chaturvedi; Anand Prakash; Sudipta Saha; Dinesh Kumar
Introduction: Erythromycin (ERY) is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group): control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR) spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a) increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b) decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a) decreased TCA cycle activity and enhanced fatty acid oxidation, (b) dysfunction of lipid and amino acid metabolism and (c) oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new drug-formulations.
Collaboration
Dive into the Atul Rawat's collaboration.
Sanjay Gandhi Post Graduate Institute of Medical Sciences
View shared research outputs