Atul S. Deshmukh
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atul S. Deshmukh.
Cell Metabolism | 2010
Carles Cantó; Lake Q. Jiang; Atul S. Deshmukh; Chikage Mataki; Agnès Coste; Marie Lagouge; Juleen R. Zierath; Johan Auwerx
During fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform this information into transcriptional and metabolic adaptations. Here we demonstrate that AMPK acts as the prime initial sensor that translates this information into SIRT1-dependent deacetylation of the transcriptional regulators PGC-1alpha and FOXO1, culminating in the transcriptional modulation of mitochondrial and lipid utilization genes. Deficient AMPK activity compromises SIRT1-dependent responses to exercise and fasting, resulting in impaired PGC-1alpha deacetylation and blunted induction of mitochondrial gene expression. Thus, we conclude that AMPK acts as the primordial trigger for fasting- and exercise-induced adaptations in skeletal muscle and that activation of SIRT1 and its downstream signaling pathways are improperly triggered in AMPK-deficient states.
Diabetes | 2006
Jonas T. Treebak; Stephan Glund; Atul S. Deshmukh; Ditte Kjærsgaard Klein; Yun Chau Long; Thomas E. Jensen; Sebastian B. Jørgensen; Benoit Viollet; Leif Andersson; Dietbert Neumann; Theo Wallimann; Erik A. Richter; Alexander V. Chibalin; Juleen R. Zierath; Jørgen F. P. Wojtaszewski
AMP-activated protein kinase (AMPK) is a heterotrimeric protein that regulates glucose transport mediated by cellular stress or pharmacological agonists such as 5-aminoimidazole-4-carboxamide 1 β-d-ribonucleoside (AICAR). AS160, a Rab GTPase-activating protein, provides a mechanism linking AMPK signaling to glucose uptake. We show that AICAR increases AMPK, acetyl-CoA carboxylase, and AS160 phosphorylation by insulin-independent mechanisms in isolated skeletal muscle. Recombinant AMPK heterotrimeric complexes (α1β1γ1 and α2β2γ1) phosphorylate AS160 in a cell-free assay. In mice deficient in AMPK signaling (α2 AMPK knockout [KO], α2 AMPK kinase dead [KD], and γ3 AMPK KO), AICAR effects on AS160 phosphorylation were severely blunted, highlighting that complexes containing α2 and γ3 are necessary for AICAR-stimulated AS160 phosphorylation in intact skeletal muscle. Contraction-mediated AS160 phosphorylation was also impaired in α2 AMPK KO and KD but not γ3 AMPK KO mice. Our results implicate AS160 as a downstream target of AMPK.
Nature Genetics | 2008
Alexandra Chadt; Katja Leicht; Atul S. Deshmukh; Lake Q. Jiang; Stephan Scherneck; Ulrike Bernhardt; Tanja Dreja; Heike Vogel; Katja Schmolz; Reinhart Kluge; Juleen R. Zierath; Claus Hultschig; Rob C. Hoeben; Annette Schürmann; Hans-Georg Joost; Hadi Al-Hasani
We previously identified Nob1 as a quantitative trait locus for high-fat diet–induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab–GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly expressed in skeletal muscle. Knockdown of TBC1D1 in skeletal muscle cells increased fatty acid uptake and oxidation, whereas overexpression of TBC1D1 had the opposite effect. Recombinant congenic mice lacking TBC1D1 showed reduced body weight, decreased respiratory quotient, increased fatty acid oxidation and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet–induced obesity by increasing lipid use in skeletal muscle.
Diabetes | 2007
Stephan Glund; Atul S. Deshmukh; Yun Chau Long; Theodore Moller; Heikki A. Koistinen; Kenneth Caidahl; Juleen R. Zierath; Anna Krook
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of S6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/β) as well as insulin receptor substrate 1–associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Diabetes | 2006
Atul S. Deshmukh; Vernon G. Coffey; Zhihui Zhong; Alexander V. Chibalin; John A. Hawley; Juleen R. Zierath
Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ∼7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise–induced bioeffects in skeletal muscle.
Diabetes-metabolism Research and Reviews | 2011
Fredirick Mashili; Reginald L. Austin; Atul S. Deshmukh; Tomas Fritz; Kenneth Caidahl; Katrin Bergdahl; Juleen R. Zierath; Alexander V. Chibalin; David E. Moller; Alexei Kharitonenkov; Anna Krook
Fibroblast growth factor (FGF) 21, a novel member of the FGF family, plays a role in a variety of endocrine functions, including regulation of glucose and lipid metabolism. The role of FGF21 in skeletal muscle is currently not known.
Molecular & Cellular Proteomics | 2015
Atul S. Deshmukh; Marta Murgia; Nagarjuna Nagaraj; Jonas T. Treebak; Jürgen Cox; Matthias Mann
Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms.
EMBO Reports | 2015
Marta Murgia; Nagarjuna Nagaraj; Atul S. Deshmukh; Marlis Zeiler; Pasqua Cancellara; Irene Moretti; Carlo Reggiani; Stefano Schiaffino; Matthias Mann
Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high‐sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype‐specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type‐resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity.
American Journal of Physiology-endocrinology and Metabolism | 2012
Ferenc Szekeres; Alexandra Chadt; Robby Zachariah Tom; Atul S. Deshmukh; Alexander V. Chibalin; Marie Björnholm; Hadi Al-Hasani; Juleen R. Zierath
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.
Molecular Endocrinology | 2008
Atul S. Deshmukh; Jonas T. Treebak; Yun Chau Long; Benoit Viollet; Jørgen F. P. Wojtaszewski; Juleen R. Zierath
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.