Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atul Vashist is active.

Publication


Featured researches published by Atul Vashist.


PLOS ONE | 2012

Appropriate DevR (DosR)-Mediated Signaling Determines Transcriptional Response, Hypoxic Viability and Virulence of Mycobacterium tuberculosis

Shyamasree De Majumdar; Atul Vashist; Sakshi Dhingra; Rajesh Kumar Gupta; Alka Singh; Vijay K. Challu; V Ramanathan; Prahlad Kumar; Jaya Sivaswami Tyagi

Background The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties. Methodology/Principal Findings M. tb complemented (Comp) strains expressing different levels of DevR were constructed in Mut1* background (expressing DevR N-terminal domain in fusion with AphI (DevRN-Kan) and in Mut2ΔdevR background (deletion mutant). They were compared for their hypoxia adaptation and virulence properties. Diverse phenotypes were noted; basal level expression (∼5.3±2.3 µM) when induced to levels equivalent to WT levels (∼25.8±9.3 µM) was associated with robust DevR regulon induction and hypoxic adaptation (Comp 9* and 10*), whereas low-level expression (detectable at transcript level) as in Comp 11* and Comp15 was associated with an adaptation defect. Intermediate-level expression (∼3.3±1.2 µM) partially restored hypoxic adaptation functions in Comp2, but not in Comp1* bacteria that co-expressed DevRN-Kan. Comp* strains in Mut1* background also exhibited diverse virulence phenotypes; high/very low-level DevR expression was associated with virulence whereas intermediate-level expression was associated with low virulence. Transcription profiling and gene expression analysis revealed up-regulation of the phosphate starvation response (PSR) in Mut1* and Comp11* bacteria, but not in WT/Mut2ΔdevR/other Comp strains, indicating a plasticity in expression pathways that is determined by the magnitude of signaling perturbation through DevRN-Kan. Conclusions/Significance A minimum DevR concentration of ∼3.3±1.2 µM (as in Comp2 bacteria) is required to support HspX expression in the standing culture hypoxia model. The relative intracellular concentrations of DevR and DevRN-Kan appear to be critical for determining dormancy regulon induction, hypoxic adaptation and virulence. Dysregulated DevRN-Kan-mediated signaling selectively triggers the PSR in bacteria expressing no/very low level of DevR. Our findings illustrate the important role of appropriate two-component- mediated signaling in pathogen physiology and the resilience of bacteria when such signaling is perturbed.


Journal of Bacteriology | 2014

Essentiality of DevR/DosR Interaction with SigA for the Dormancy Survival Program in Mycobacterium tuberculosis

Uma Shankar Gautam; Kriti Sikri; Atul Vashist; Varshneya Singh; Jaya Sivaswami Tyagi

The DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the SigA -35 element, suggesting that DevR-SigA interaction is required for activating transcription. We evaluated the roles of 14 charged residues of DevR in transcriptional activation under hypoxic stress. Seven of the 14 alanine substitution mutants were defective in regulon activation, of which K191A, R197A, and K179A+K168A (designated K179A*) mutants were significantly or completely compromised in DNA binding. Four mutants, namely, E154A, R155A, E178A, and K208A, were activation defective in spite of binding to DNA and were classified as positive-control (pc) mutants. The SigA interaction defect of the E154A and E178A proteins was established by in vitro and in vivo assays and implies that these substitutions lead to an activation defect because they disrupt an interaction(s) with SigA. The relevance of DevR interaction to the transcriptional machinery was further established by the hypoxia survival phenotype displayed by SigA interaction-defective mutants. Our findings demonstrate the role of DevR-SigA interaction in the activation mechanism and in bacterial survival under hypoxia and establish the housekeeping sigma factor SigA as a molecular target of DevR. The interaction of DevR and RNA polymerase suggests a new and novel interceptable molecular interface for future antidormancy strategies for Mycobacterium tuberculosis.


Biomaterials Science | 2016

Recent trends on hydrogel based drug delivery systems for infectious diseases

Arti Vashist; Ajeet Kaushik; Atul Vashist; Rahul Dev Jayant; Asahi Tomitaka; Sharif Ahmad; Yogendra Kumar Gupta; Madhavan Nair

Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.


PLOS ONE | 2010

Co-Expression of DevR and DevRN-Aph Proteins Is Associated with Hypoxic Adaptation Defect and Virulence Attenuation of Mycobacterium tuberculosis

Shyamasree De Majumdar; Deepak Sharma; Atul Vashist; Kohinoor Kaur; Neetu Kumra Taneja; Santosh Chauhan; Vijay K. Challu; V Ramanathan; V. Balasangameshwara; Prahlad Kumar; Jaya Sivaswami Tyagi

Background The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis. Methodology/Principal Findings Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevRNTD) as a fusion protein with AphI (DevRN-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevRN-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria. Conclusions/Significance The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevRN-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation.


Redox biology | 2018

Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs

Kriti Sikri; Priyanka Duggal; Chanchal Kumar; Sakshi Dhingra Batra; Atul Vashist; Ashima Bhaskar; Kritika Tripathi; Tavpritesh Sethi; Amit Singh; Jaya Sivaswami Tyagi

Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment.


Current Pharmaceutical Design | 2017

Bioresponsive Injectable Hydrogels for On-demand Drug Release and Tissue Engineering

Arti Vashist; Ajeet Kaushik; Kayla Alexis; Rahul Dev Jayant; Vidya Sagar; Atul Vashist; Madhavan Nair

The emergence of injectable hydrogels as biomaterials has been a revolutionary breakthrough in the field of on-demand drug delivery and tissue engineering. The promising features of these systems include their biodegradability, biocompatibility, permeability, ease of the surgical implantation, and most importantly exhibit minimally invasiveness. These hydrogels have been explored as sustained and on-demand release carriers for the various bioactive agents, growth factors, live cells, various hydrophobic drugs and as extracellular matrices for tissue engineering. Present review is an attempt to highlight the recent systems explored for on-demand drug release and tissue engineering. It also gives an overview of the role of nanotechnology in the advancements of injectable hydrogels. The future prospects and challenges of these hydrogels have also been addressed.


Drug Discovery Today | 2018

Nanogels as potential drug nanocarriers for CNS drug delivery

Arti Vashist; Ajeet Kaushik; Atul Vashist; Jyoti Bala; Roozbeh Nikkhah-Moshaie; Vidya Sagar; Madhavan Nair

Hydrogel-based drug delivery systems (DDSs) have versatile applications such, as tissue engineering, scaffolds, drug delivery, and regenerative medicines. The drawback of higher size and poor stability in such DDSs are being addressed by developing nano-sized hydrogel particles, known as nanogels, to achieve the desired biocompatibility and encapsulation efficiency for better efficacy than conventional bulk hydrogels. In this review, we describe advances in the development of nanogels and their promotion as nanocarriers to deliver therapeutic agents to the central nervous system (CNS). We also discuss the challenges, possible solutions, and future prospects for the use of nanogel-based DDSs for CNS therapies.


Advanced Healthcare Materials | 2018

Advances in Carbon Nanotubes–Hydrogel Hybrids in Nanomedicine for Therapeutics

Arti Vashist; Ajeet Kaushik; Atul Vashist; Vidya Sagar; Anujit Ghosal; Yogendra Kumar Gupta; Sharif Ahmad; Madhavan Nair

In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.


FEBS Journal | 2016

The α10 helix of DevR, the Mycobacterium tuberculosis dormancy response regulator, regulates its DNA binding and activity

Atul Vashist; D. Prithvi Raj; Umesh Datta Gupta; Rajiv Bhat; Jaya Sivaswami Tyagi

The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their ‘active’ or ‘inactive’ states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA‐binding competent dimeric species via α10‐α10 helix interactions. The α10 helix‐deleted DevR protein (DevR∆α10) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross‐linking and DNA‐binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA‐binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10‐α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia‐triggered dormancy.


Journal of Biological Chemistry | 2018

Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis

Atul Vashist; Vandana Malhotra; Gunjan Sharma; Jaya Sivaswami Tyagi; Josephine E. Clark-Curtiss

The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium–specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70–80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.

Collaboration


Dive into the Atul Vashist's collaboration.

Top Co-Authors

Avatar

Jaya Sivaswami Tyagi

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ajeet Kaushik

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Madhavan Nair

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arti Vashist

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Rahul Dev Jayant

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Anujit Ghosal

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Arti Vashist

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Yogendra Kumar Gupta

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vidya Sagar

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge