Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aubrey M. Kelly is active.

Publication


Featured researches published by Aubrey M. Kelly.


Hormones and Behavior | 2012

Evolving nonapeptide mechanisms of gregariousness and social diversity in birds.

James L. Goodson; Aubrey M. Kelly; Marcy A. Kingsbury

Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship

James L. Goodson; David Kabelik; Aubrey M. Kelly; Jacob Rinaldi; James D. Klatt

Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of “incentive value” to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa.


Frontiers in Neuroendocrinology | 2014

Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know?

Aubrey M. Kelly; James L. Goodson

Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.


PLOS ONE | 2011

Mammal-Like Organization of the Avian Midbrain Central Gray and a Reappraisal of the Intercollicular Nucleus

Marcy A. Kingsbury; Aubrey M. Kelly; Sara E. Schrock; James L. Goodson

In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hypothalamic oxytocin and vasopressin neurons exert sex-specific effects on pair bonding, gregariousness, and aggression in finches

Aubrey M. Kelly; James L. Goodson

Significance Vasopressin (VP) and oxytocin (OT) modulate numerous social behaviors, including aggression, grouping, and pair bonding, and many sites of action are known. However, the sources of peptide at those sites remains largely unknown. All sites of action likely receive VP and OT from multiple cell groups (of 20 or more), through either direct innervation or paracrine signaling; thus, experimental manipulations are required to determine functions of individual cell groups. Relevant data are scarce, however. Using RNA interference, we found that OT and VP neurons of the paraventricular hypothalamus modulate various diverse behaviors, including grouping, opposite-sex aggression, pair bonding, intrapair affiliation, and stress coping. Hence paraventricular neurons are major contributors to the effects of VP-OT on behavior. Antagonism of oxytocin (OT) receptors (OTRs) impairs the formation of pair bonds in prairie voles (Microtus ochrogaster) and zebra finches (Taenioypygia guttata), and also reduces the preference for the larger of two groups (“gregariousness”) in finches. These effects tend to be stronger in females. The contributions of specific peptide cell groups to these processes remain unknown, however. This issue is complicated by the fact that OTRs in finches and voles bind not only forms of OT, but also vasopressin (VP), and >10 cell groups produce each peptide in any given species. Using RNA interference, we found that knockdown of VP and OT production in the paraventricular nucleus of the hypothalamus exerts diverse behavioral effects in zebra finches, most of which are sexually differentiated. Our data show that knockdown of VP production significantly reduces gregariousness in both sexes and exerts sex-specific effects on aggression directed toward opposite-sex birds (increases in males; decreases in females), whereas OT knockdown produces female-specific deficits in gregariousness, pair bonding, and nest cup ownership; reduces side-by-side perching in both sexes; modulates stress coping; and induces hyperphagia in males. These findings demonstrate that paraventricular neurons are major contributors to the effects of VP-OT peptides on pair bonding and gregariousness; reveal previously unknown effects of sex-specific peptide on opposite-sex aggression; and demonstrate a surprising lack of effects on same-sex aggression. Finally, the observed effects of OT knockdown on feeding and stress coping parallel findings in mammals, suggesting that OT modulation of these processes is evolutionarily conserved across the amniote vertebrate classes.


Neuropharmacology | 2010

Dopaminergic regulation of mate competition aggression and aromatase-Fos colocalization in vasotocin neurons.

David Kabelik; Aubrey M. Kelly; James L. Goodson

Recent experiments demonstrate that aggressive competition for potential mates involves different neural mechanisms than does territorial, resident-intruder aggression. However, despite the obvious importance of mate competition aggression, we know little about its regulation. Immediate early gene experiments show that in contrast to territorial aggression, mate competition in finches is accompanied by the activation of neural populations associated with affiliation and motivation, including vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and midbrain dopamine (DA) neurons that project to the BSTm. Although VT is known to facilitate mate competition aggression, the role of DA has not previously been examined. We now show that in male zebra finches (Taeniopygia guttata), mate competition aggression is inhibited by the D(2) agonist quinpirole, though not the D(1) agonist SKF-38393 or the D(4) agonist PD168077. The D(3) agonist 7-OH-DPAT also inhibited aggression, but only following high dose treatment that may affect aggression via nonspecific binding to D(2) receptors. Central VT infusion failed to restore D(2) agonist-inhibited aggression in a subsequent experiment, demonstrating that D(2) does not suppress aggression by inhibiting VT release from BSTm neurons. In a final experiment, we detected D(2) agonist-induced increases in immunofluorescent colocalization of the product of the immediate early gene c-fos and the steroid-converting enzyme aromatase (ARO) within VT neurons of the BSTm. Thus, although VT and DA appear to influence mate competition aggression independently, BSTm VT neurons are clearly influenced by the activation of D(2) receptors, which may modify future behaviors.


Proceedings of the National Academy of Sciences of the United States of America | 2012

An aggression-specific cell type in the anterior hypothalamus of finches

James L. Goodson; Aubrey M. Kelly; Marcy A. Kingsbury; Richmond R. Thompson

The anterior hypothalamus (AH) is a major integrator of neural processes related to aggression and defense, but cell types in the AH that selectively promote aggression are unknown. We here show that aggression is promoted in a very selective and potent manner by dorsal AH neurons that produce vasoactive intestinal polypeptide (VIP). Fos activity in a territorial finch, the violet-eared waxbill (Estrildidae: Uraeginthus granatina) is positively related to aggression in the dorsal AH, overlapping a population of VIP-producing neurons. VIP is known to promote territorial aggression in songbirds, and thus we used antisense oligonucleotides to selectively block AH VIP production in male and female waxbills. This manipulation virtually abolishes aggression, reducing the median number of displacements in a 3-min resident–intruder test from 38 in control subjects to 0 in antisense subjects. Notably, most antisense and control waxbills exhibit an agonistic response such as a threat or agonistic call within 2 s of intrusion. Thus, antisense subjects clearly classify intruders as offensive, but fail to attack. Other social and anxiety-like behaviors are not affected and VIP cell numbers correlate positively with aggression, suggesting that these cells selectively titrate aggression. Additional experiments in the gregarious zebra finch (Estrildidae: Taeniopygia guttata) underscore this functional specificity. Colony-housed finches exhibit significant reductions in aggression (primarily nest defense) following AH VIP knockdown, but no effects are observed for social preferences, pair bonding, courtship, maintenance behaviors, or anxiety-like behaviors. To our knowledge, these findings represent a unique identification of an aggression-specific cell type in the brain.


Frontiers in Behavioral Neuroscience | 2014

Personality is tightly coupled to vasopressin-oxytocin neuron activity in a gregarious finch

Aubrey M. Kelly; James L. Goodson

Nonapeptides of the vasopressin-oxytocin family modulate social processes differentially in relation to sex, species, behavioral phenotype, and human personality. However, the mechanistic bases for these differences are not well understood, in part because multidimensional personality structures remain to be described for common laboratory animals. Based upon principal components (PC) analysis of extensive behavioral measures in social and nonsocial contexts, we now describe three complex dimensions of phenotype (“personality”) for the zebra finch, a species that exhibits a human-like social organization that is based upon biparental nuclear families embedded within larger social groups. These dimensions can be characterized as Social competence/dominance, Gregariousness, and Anxiety. We further demonstrate that the phasic Fos responses of nonapeptide neurons in the paraventricular nucleus of the hypothalamus and medial bed nucleus of the stria terminalis are significantly predicted by personality, sex, social context, and their interactions. Furthermore, the behavioral PCs are each associated with a distinct suite of neural PCs that incorporate both peptide cell numbers and their phasic Fos responses, indicating that personality is reflected in complex patterns of neuromodulation arising from multiple peptide cell groups. These findings provide novel insights into the mechanisms underlying sex- and phenotype-specific modulation of behavior, and should be broadly relevant, given that vasopressin-oxytocin systems are strongly conserved across vertebrates.


Behavioural Brain Research | 2015

Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches.

Aubrey M. Kelly; James L. Goodson

Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups.


Frontiers in Neuroscience | 2013

Behavioral relevance of species-specific vasotocin anatomy in gregarious finches

Aubrey M. Kelly; James L. Goodson

Despite substantial species differences in the vasotocin/vasopressin (VT/VP) circuitry of the medial bed nucleus of the stria terminalis (BSTm) and lateral septum (LS; a primary projection target of BSTm VT/VP cells), functional consequences of this variation are poorly known. Previous experiments in the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata) demonstrate that BSTm VT neurons promote gregariousness in a male-specific manner and reduce anxiety in both sexes. However, in contrast to the zebra finch, the less gregarious Angolan blue waxbill (Estrildidae: Uraeginthus angolensis) exhibits fewer VT-immunoreactive cells in the BSTm as well as differences in receptor distribution across the LS subnuclei, suggesting that knockdown of VT production in the BSTm would produce behavioral effects in Angolan blue waxbills that are distinct from zebra finches. Thus, we here quantified social contact, gregariousness (i.e., preference for the larger of two groups), and anxiety-like behavior following bilateral antisense knockdown of VT production in the BSTm of male and female Angolan blue waxbills. We find that BSTm VT neurons promote social contact, but not gregariousness (as in male zebra finches), and that antisense effects on social contact are significantly stronger in male waxbills than in females. Knockdown of BSTm VT production has no effect on anxiety-like behavior. These data provide novel evidence that species differences in the VT/VP circuitry arising in the BSTm are accompanied by species-specific effects on affiliation behaviors.

Collaboration


Dive into the Aubrey M. Kelly's collaboration.

Top Co-Authors

Avatar

James L. Goodson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Marcy A. Kingsbury

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Rinaldi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara E. Schrock

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Klatt

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge