Aude Le Bail
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aude Le Bail.
Nature | 2010
J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
New Phytologist | 2007
Bénédicte Charrier; Susana M. Coelho; Aude Le Bail; Thierry Tonon; Gurvan Michel; Philippe Potin; Bernard Kloareg; Catherine Boyen; Akira F. Peters; J. Mark Cock
Brown algae share several important features with land plants, such as their photoautotrophic nature and their cellulose-containing wall, but the two groups are distantly related from an evolutionary point of view. The heterokont phylum, to which the brown algae belong, is a eukaryotic crown group that is phylogenetically distinct not only from the green lineage, but also from the red algae and the opisthokont phylum (fungi and animals). As a result of this independent evolutionary history, the brown algae exhibit many novel features and, moreover, have evolved complex multicellular development independently of the other major groups already mentioned. In 2004, a consortium of laboratories, including the Station Biologique in Roscoff and Genoscope, initiated a project to sequence the genome of Ectocarpus siliculosus, a small filamentous brown alga that is found in temperate, coastal environments throughout the globe. The E. siliculosus genome, which is currently being annotated, is expected to be the first completely characterized genome of a multicellular alga. In this review we look back over two centuries of work on this brown alga and highlight the advances that have led to the choice of E. siliculosus as a genomic and genetic model organism for the brown algae.
BMC Molecular Biology | 2008
Aude Le Bail; Simon M. Dittami; Pierre-Olivier de Franco; Sylvie Rousvoal; Mark J Cock; Thierry Tonon; Bénédicte Charrier
BackgroundBrown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of cell organization, including transcriptomic expression analyses. Several topics, including physiological responses to osmotic stress and to exposure to contaminants and solvents are being studied in order to better understand the adaptive capacity of brown algae to pollution and environmental changes. A series of genes that can be used to normalise expression analyses is required for these studies.ResultsWe monitored the expression of 13 genes under 21 different culture conditions. These included genes encoding proteins and factors involved in protein translation (ribosomal protein 26S, EF1alpha, IF2A, IF4E) and protein degradation (ubiquitin, ubiquitin conjugating enzyme) or folding (cyclophilin), and proteins involved in both the structure of the cytoskeleton (tubulin alpha, actin, actin-related proteins) and its trafficking function (dynein), as well as a protein implicated in carbon metabolism (glucose 6-phosphate dehydrogenase). The stability of their expression level was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles of calculation.ConclusionComparisons of the data obtained with the three methods of calculation indicated that EF1alpha (EF1a) was the best reference gene for normalisation. The normalisation factor should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-related proteins being good partners of EF1a. Our results exclude actin as a good normalisation gene, and, in this, are in agreement with previous studies in other organisms.
Plant Physiology | 2010
Aude Le Bail; Bernard Billoud; Nathalie Kowalczyk; Mariusz Kowalczyk; Morgane Gicquel; Sophie Le Panse; Sarah Stewart; Delphine Scornet; Jeremy Mark Cock; Karin Ljung; Bénédicte Charrier
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.
The Plant Cell | 2011
Aude Le Bail; Bernard Billoud; Sophie Le Panse; Sabine Chenivesse; Bénédicte Charrier
By means of a combination of experimental and modeling approaches applied to the hyperbranching mutant étoile, cell–cell communication, likely mediated by novel transmembrane proteins that share similarities with metazoan Notch receptors, was shown to account for the establishment of filament patterning and cell differentiation in the filamentous brown alga Ectocarpus siliculosus. Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell–cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell–cell communication during the establishment of the developmental pattern in this brown alga.
Trends in Plant Science | 2012
Bénédicte Charrier; Aude Le Bail; Bruno de Reviers
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.
Journal of Phycology | 2008
Aude Le Bail; Bernard Billoud; Carole Maisonneuve; Akira F. Peters; J. Mark Cock; Bénédicte Charrier
The distant phylogenetic position of brown macroalgae from the other multicellular phyla offers the opportunity to study novel and alternative developmental processes involved in the establishment of multicellularity. At present, however, very little information is available about developmental patterning in this group. Ectocarpus siliculosus (Dillwyn) Lyngb. has uniseriate filaments and displays one of the simplest architectures in the Phaeophyceae. The aim of this study was to decipher the morphogenetic steps that lead to the development of the Ectocarpus sporophyte. We carried out a detailed morphometric study of the events that occurred between gamete germination and the 100‐cell stage. This analysis was performed on two ecologically distant isolates to assess plasticity in developmental patterning within this species. Cell sizes were measured in both isolates, allowing the definition of two main cell types based on their shape (round and elongated). On average, the filament is composed of about 40% round cells, which are present in the central region of the filament, but different combinations of the two cell types within filaments were observed and quantified. Young sporophytes grew apically, with elongated cells progressively differentiating into round cells. Secondary filaments emerged preferentially on round cells, primarily from the older central cells. Statistical analyses showed that the pattern of branching was regulated to ensure a stereotyped architecture. This description of the developmental patterning during the growth of the E. siliculosus sporophyte will serve as a base for more detailed studies of development, in this species and in brown algae in general.
Nucleic Acids Research | 2014
Bernard Billoud; Zofia Nehr; Aude Le Bail; Bénédicte Charrier
We used an in silico approach to predict microRNAs (miRNAs) genome-wide in the brown alga Ectocarpus siliculosus. As brown algae are phylogenetically distant from both animals and land plants, our approach relied on features shared by all known organisms, excluding sequence conservation, genome localization and pattern of base-pairing with the target. We predicted between 500 and 1500 miRNAs candidates, depending on the values of the energetic parameters used to filter the potential precursors. Using quantitative polymerase chain reaction assays, we confirmed the existence of 22 miRNAs among 72 candidates tested, and of 8 predicted precursors. In addition, we compared the expression of miRNAs and their precursors in two life cycle states (sporophyte, gametophyte) and under salt stress. Several miRNA precursors, Argonaute and DICER messenger RNAs were differentially expressed in these conditions. Finally, we analyzed the gene organization and the target functions of the predicted candidates. This showed that E. siliculosus miRNA genes are, like plant miRNA genes, rarely clustered and, like animal miRNA genes, often located in introns. Among the predicted targets, several widely conserved functional domains are significantly overrepresented, like kinesin, nucleotide-binding/APAF-1, R proteins and CED-4 (NB-ARC) and tetratricopeptide repeats. The combination of computational and experimental approaches thus emphasizes the originality of molecular and cellular processes in brown algae.
Functional Plant Biology | 2008
Bernard Billoud; Aude Le Bail; Bénédicte Charrier
Early development of the filamentous brown alga Ectocarpus siliculosus (Dillwyn) Lyngbye involves two cell types that are arranged in a polymorphic, but constrained, pattern. The present study aimed to decipher the cellular processes responsible for the establishment of this pattern. Thorough observations characterised five different events of division and differentiation that occurred during the early development. The hypothesis that a local control is responsible for these processes was tested. To do so, Ectomat, a stochastic automaton in which each cell only interacts with its closest neighbour(s), was created. The probabilities for the five events were adjusted to fit to the observations. Simulations with Ectomat reconstructed most of the essential properties of the sporophyte development, in terms of cell-type proportion, relative position and growth dynamics. The whole organism properties emerged by applying local transition rules. In conclusion, no global position information system was required at this development stage. Randomly occurring cell events, driven by simple contact interactions, are sufficient to account for the early filament development and establishment of the cell-type pattern of E. siliculosus.
Archive | 2012
J. Mark Cock; Lieven Sterck; Sophia Ahmed; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Alok Arun; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Gildas Le Corguillé; Erwan Corre; Laurence Dartevelle; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau
Brown algae are important organisms both because of their key ecological roles in coastal ecosystems and because of the remarkable biological features that they have acquired during their unusual evolutionary history. The recent sequencing of the complete genome of the filamentous brown alga Ectocarpus has provided unprecedented access to the molecular processes that underlie brown algal biology. Analysis of the genome sequence, which exhibits several unusual structural features, identified genes that are predicted to play key roles in several aspects of brown algal metabolism, in the construction of the multicellular bodyplan and in resistance to biotic and abiotic stresses. Information from the genome sequence is currently being used in combination with other genomic, genetic and biochemical tools to further investigate these and other aspects of brown algal biology at the molecular level. Here, we review some of the major discoveries that emerged from the analysis of the Ectocarpus genome sequence, with a particular focus on the unusual genome structure, inferences about brown algal evolution and novel aspects of brown algal metabolism.