Audra G. Sostarecz
Monmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Audra G. Sostarecz.
Chemistry & Biodiversity | 2011
Kellie A. Woll; Elie J. Schuchardt; Claire R. Willis; Christopher D. Ortengren; Noah Hendricks; Mitch Johnson; Ernestas Gaidamauskas; Bharat Baruah; Audra G. Sostarecz; Deanna R. Worley; David W. Osborne; Debbie C. Crans
The interaction of amphiphilic molecules such as lipids and surfactants with the hydrophilic drug carboplatin was investigated to identify suitable self‐assembling components for a potential gel‐based delivery formulation. 1H‐NMR Studies in sodium bis(2‐ethylhexyl) sulfosuccinate (aerosol‐OT, AOT)‐based reverse micelles show that carboplatin associates and at least partially penetrates the surfactant interface. Langmuir monolayers formed by dipalmitoyl(phosphatidyl)choline are penetrated by carboplatin. Carboplatin was found to also penetrate the more rigid monolayers containing cholesterol. A combined mixed surfactant gel formulation containing carboplatin and cholesterol for lymphatic tissue targeting was investigated for the intracavitary treatment of cancer. This formulation consists of a blend of the surfactants lecithin and AOT (1 : 3 ratio), an oil phase of isopropyl myristate, and an aqueous component. The phases of the system were defined within a pseudo‐ternary phase diagram. At low oil content, this formulation produces a gel‐like system over a wide range of H2O content. The carboplatin release from the formulation displays a prolonged discharge with a rate three to five times slower than that of the control. Rheological properties of the formulation exhibit pseudoplastic behavior. Microemulsion and Langmuir monolayer studies support the interactions between carboplatin and amphiphilic components used in this formulation. To target delivery of carboplatin, two formulations containing cholesterol were characterized. These two formulations with cholesterol showed that, although cholesterol does little to alter the phases in the pseudo‐ternary system or to increase the initial release of the drug, it contributes significantly to the structure of the formulation under physiological temperature, as well as increases the rate of steady‐state discharge of carboplatin.
Langmuir | 2018
Benjamin J. Peters; Cameron Van Cleave; Allison Haase; John Peter B Hough; Keisha A. Giffen-Kent; Gabriel M. Cardiff; Audra G. Sostarecz; Dean C. Crick; Debbie C. Crans
Pyridine-based small-molecule drugs, vitamins, and cofactors are vital for many cellular processes, but little is known about their interactions with membrane interfaces. These specific membrane interactions of these small molecules or ions can assist in diffusion across membranes or reach a membrane-bound target. This study explores how minor differences in small molecules (isoniazid, benzhydrazide, isonicotinamide, nicotinamide, picolinamide, and benzamide) can affect their interactions with model membranes. Langmuir monolayer studies of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylethanolamine (DPPE), in the presence of the molecules listed, show that isoniazid and isonicotinamide affect the DPPE monolayer at lower concentrations than the DPPC monolayer, demonstrating a preference for one phospholipid over the other. The Langmuir monolayer studies also suggest that nitrogen content and stereochemistry of the small molecule can affect the phospholipid monolayers differently. To determine the molecular interactions of the simple N-containing aromatic pyridines with a membrane-like interface, 1H one-dimensional NMR and 1H-1H two-dimensional NMR techniques were utilized to obtain information about the position and orientation of the molecules of interest within aerosol-OT (AOT) reverse micelles. These studies show that all six of the molecules reside near the AOT sulfonate headgroups and ester linkages in similar positions, but nicotinamide and picolinamide tilt at the water-AOT interface to varying degrees. Combined, these studies demonstrate that small structural changes of small N-containing molecules can affect their specific interactions with membrane-like interfaces and specificity toward different membrane components.
Journal of Antimicrobial Chemotherapy | 2007
Robert Bucki; Audra G. Sostarecz; Fitzroy J. Byfield; Paul B. Savage; Paul A. Janmey
Langmuir | 2004
Audra G. Sostarecz; Donald M. Cannon; Carolyn M. McQuaw; Shixin Sun; and Andrew G. Ewing; Nicholas Winograd
Analytical Chemistry | 2004
Audra G. Sostarecz; Carolyn M. McQuaw; and Andreas Wucher; Nicholas Winograd
Langmuir | 2005
Carolyn M. McQuaw; Audra G. Sostarecz; Leiliang Zheng; and Andrew G. Ewing; Nicholas Winograd
Applied Surface Science | 2004
Audra G. Sostarecz; Shixin Sun; Christopher Szakal; A. Wucher; Nicholas Winograd
Journal of the American Chemical Society | 2004
Audra G. Sostarecz; Carolyn M. McQuaw; and Andrew G. Ewing; Nicholas Winograd
Chemistry: A European Journal | 2014
Audra G. Sostarecz; Ernestas Gaidamauskas; Steve Distin; Sandra J. Bonetti; Nancy E. Levinger; Debbie C. Crans
Applied Surface Science | 2006
Carolyn M. McQuaw; Audra G. Sostarecz; Leiliang Zheng; Andrew G. Ewing; Nicholas Winograd