Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey Buleté is active.

Publication


Featured researches published by Audrey Buleté.


PLOS ONE | 2013

Widespread Occurrence of Chemical Residues in Beehive Matrices from Apiaries Located in Different Landscapes of Western France

Olivier Lambert; Mélanie Piroux; Sophie Puyo; Chantal Thorin; Monique L'Hostis; Laure Wiest; Audrey Buleté; Frédéric Delbac; Hervé Pouliquen

Background The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues. Methodology/Findings A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC−MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28) than in the pollen (n = 23) or honey bee (n = 20) samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods. Conclusions/Significance Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.


Ecotoxicology and Environmental Safety | 2012

Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam.

Alexandra Badiou-Bénéteau; Stephan Malfitano Carvalho; Jean-Luc Brunet; Geraldo Andrade Carvalho; Audrey Buleté; Barbara Giroud; Luc P. Belzunces

This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides.


Science of The Total Environment | 2016

Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

R. Mailler; Johnny Gasperi; Y. Coquet; Audrey Buleté; Emmanuelle Vulliet; Steven Deshayes; Sifax Zedek; C. Mirande-Bret; V. Eudes; A. Bressy; Emilie Caupos; Régis Moilleron; Ghassan Chebbo; Vincent Rocher

Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92-97%), carbamazepine (80-94%), ciprofloxacin (75-95%), diclofenac (71-97%), oxazepam (74-91%) or sulfamethoxazole (56-83%). In addition, alkylphenols, artificial sweeteners, benzotriazole, bisphenol A, personal care products (triclocarban and parabens) and pesticides have removals lying in the 50 ->90% range. Overall, the fluidized bed of μGAC allows obtaining performances comparable to PAC at the same activated carbon dose. Indeed, the average removal of the 13 PPHs found at a high occurrence (>75%) in WWTP discharges is similar at 20 g/m(3) of μGAC (78-89%) and PAC (85-93%). In addition, this recycled μGAC operation leads to several operational advantages (no FeCl3, reactivable, higher SRT, higher treated flow) and has a stronger impact on the overall wastewater quality compared to PAC.


Analytical Chemistry | 2016

Differential Isotope Labeling of 38 Dietary Polyphenols and Their Quantification in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry

David Achaintre; Audrey Buleté; Cécile Cren-Olivé; Liang Li; Sabina Rinaldi; Augustin Scalbert

A large number of polyphenols are consumed with the diet and may contribute to the prevention of chronic diseases such as cardiovascular diseases, diabetes, cancers, and neurodegenerative diseases. More comprehensive methods are needed to measure exposure to this complex family of bioactive plant compounds in epidemiological studies. We report here a novel method enabling the simultaneous measurement in urine of 38 polyphenols representative of the main classes and subclasses found in the diet. This method is based on differential (12)C-/(13)C-isotope labeling of polyphenols through derivatization with isotopic dansyl chloride reagents and on the analysis of the labeled polyphenols by tandem mass spectrometry. This derivatization approach overcomes the need for costly labeled standards. Different conditions for enzyme hydrolysis of polyphenol glucuronides and sulfate esters, extraction, and dansylation of unconjugated aglycones were tested and optimized. Limits of quantification varied from 0.01 to 1.1 μM depending on polyphenols. Intrabatch coefficients of variation varied between 3.9% and 9.6%. Interbatch variations were lower than 15% for 31 compounds and lower than 29% for 6 additional polyphenols out of the 38 tested. Thirty seven polyphenols were validated and then analyzed in 475, 24 h urine samples from the European Prospective Investigation on Cancer and Nutrition (EPIC) study. Thirty four polyphenols could be detected and successfully estimated and showed large interindividual variations of concentrations (2-3 orders of magnitude depending on the compound), with median concentrations spanning from 0.01 to over 1000 μM for all 34 compounds.


Talanta | 2015

MicroQuEChERS–nanoliquid chromatography–nanospray–tandem mass spectrometry for the detection and quantification of trace pharmaceuticals in benthic invertebrates

Alexandra Berlioz-Barbier; Robert Baudot; Laure Wiest; Marion Gust; Jeanne Garric; Cécile Cren-Olivé; Audrey Buleté

Due to industrialization and the use of chemical products in everyday life, various types of drugs and pesticides are present in our environment, which threaten and cause negative impacts on aquatic ecosystems. The consequences of these pollutants are gradually becoming visible. Recent evidence confirms that long term exposure to environmental pharmaceutical concentrations can induce adverse effects in aquatic vertebrates and invertebrates such as reproductive impairments and collapse wild populations. Consequently, one of the challenges of environmental science is to evaluate the associated risks. In this context, a new methodology has been developed using nano-LC-nano-ESI MS/MS to quantify traces of two pharmaceuticals (a neuropharmaceutical drug, fluoxetine, and an anticonvulsant drug, carbamazepine) in two molluscs, Potamopyrgus antipodarum and Valvata piscinalis, which are both prosobranch gastropods. A simple and quick extraction method was developed based on a modified and miniaturized version of the QuEChERS method. The procedure involves the extraction of approximately 10 mg of wet mollusc tissue by 500 µL of a mixture of acetonitrile/water/hexane (50/20/30) and 100 mg of buffer salt. Thus, the extraction step was carried out on an individual scale. The sensitivity of this method allowed for the detection of levels as low as 18 ng/g and 128 ng/g for carbamazepine and fluoxetine, respectively, with recoveries of greater than 85% for the two targeted compounds. This method was then applied to both gastropod species exposed to fluoxetine under laboratory conditions. The results provide evidence of bioaccumulation in both P. antipodarum and V. piscinalis and reveal the inter-species differences.


PLOS ONE | 2014

A Pragmatic Approach to Assess the Exposure of the Honey Bee (Apis mellifera) When Subjected to Pesticide Spray

Yannick Poquet; Laurent Bodin; Marc Tchamitchian; Marion Fusellier; Barbara Giroud; Florent Lafay; Audrey Buleté; Sylvie Tchamitchian; Marianne Cousin; Michel Pélissier; Jean-Luc Brunet; Luc P. Belzunces

Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides.


International Journal of Environmental Analytical Chemistry | 2015

Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry

Claire Jabot; Maëva Fieu; Barbara Giroud; Audrey Buleté; Hervé Casabianca; Emmanuelle Vulliet

The aim of the work was to develop an analytical procedure able to quantify traces of 13 neonicotinoids and pyrethroids as well as carboxamide in beeswax at low levels (ng g−1) to evaluate the contamination. For this purpose, an efficient sample preparation procedure was developed based on solid–liquid extraction using dispersive diatomaceous earth and acetonitrile. This step was followed by a selective and sensitive analysis based on ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (ESI-MS/MS). This analytical procedure was validated based on International Conference on Harmonization guidelines. The limits of quantification ranged from 1 ng g−1 (thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid and boscalid) to 40 ng g−1 (lambda-cyhalothrin). The method was then successfully applied to 60 samples of beeswax collected in several areas of France. The presence of thiacloprid, boscalid, imidacloprid and deltamethrin in beeswax was confirmed. The most frequently quantified pesticide was boscalid.


Journal of Chromatography A | 2016

Quantification of emerging micropollutants in an amphipod crustacean by nanoliquid chromatography coupled to mass spectrometry using multiple reaction monitoring cubed mode.

Martin Sordet; Alexandra Berlioz-Barbier; Audrey Buleté; Jeanne Garric; Emmanuelle Vulliet

An innovative analytical method has been developed to quantify the bioaccumulation in an amphipod crustacean (Gammarus fossarum) of three micropollutants regarded as anthropic-pollution markers: carbamazepine, oxazepam, and testosterone. A liquid-liquid extraction assisted by salts, known as QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) was miniaturised and optimised, so it could be adapted to the low mass samples (approximatively 5mg dry weight). For this same reason and in order to obtain good sensitivity, ultra-trace analyses were carried out by means of nanoliquid chromatography. A preconcentration system by on-column trapping was optimised to increase the injection volume. In order to improve both sensitivity and selectivity, the multiple reaction monitoring cubed mode analyses (MRM(3)) were carried out, validated and compared to the classic MRM. To the best of our knowledge, this is the first time that MRM(3) is coupled to nanoliquid chromatography for the analysis and detection of organic micropollutants <300Da. The optimised extraction method exhibited recoveries superior to 80%. The limits of quantification of the target compounds were 0.3, 0.7 and 4.7ng/g (wet weight) for oxazepam, carbamazepine and testosterone, respectively and the limits of detection were 0.1, 0.3 and 2.2ng/g (wet weight), respectively. The intra- and inter-day precisions were inferior to 7.7% and 10.9%, respectively, for the three levels of concentration tested. The analytical strategy developed allowed to obtain limits of quantification lower than 1ng/g (wet weight) and to establish the kinetic bioconcentration of contaminants within G. fossarum.


Science of The Total Environment | 2017

Evaluation of the influence of surfactants in the bioaccumulation kinetics of sulfamethoxazole and oxazepam in benthic invertebrates

María Jesús García-Galán; Martin Sordet; Audrey Buleté; Jeanne Garric; Emmanuelle Vulliet

The potential ecotoxicological effects of mixtures of contaminants in the aquatic environment are generating a global concern. Benthic invertebrates, such as the crustacean Gammarus fossarum, are key in the functioning of aquatic ecosystems, and are frequently used as sentinel species of water quality status. The aim of this work was to study the effects of a mixture of the most frequently detected surfactants in the bioconcentration kinetics of two pharmaceuticals in G. fossarum, evaluating their potential enhancing or suppressing effects. Laboratory exposure experiments for both pharmaceuticals and surfactants (concentration ratio 1:25) were set up for two individual compounds, the anxiolytic oxazepam and the antibiotic sulfamethoxazole. Gammarid samples were processed using microQuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction. Pharmaceuticals concentration in the organisms was followed-up by means of nanoliquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS). Results indicated a similar mode of action of the surfactants in the bioconcentration kinetics of both drugs, decreasing the accumulation rate in the organism. Oxazepam showed a higher accumulation potential than sulfamethoxazole in all cases. Depuration experiments for oxazepam also demonstrated the high depurative capacity of gammarids, eliminating >50% of the concentration of oxazepam in <6h.


Talanta | 2016

Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures.

A. Cortéjade; A. Kiss; C. Cren; Emmanuelle Vulliet; Audrey Buleté

The aim of this study was to develop an analytical method and contribute to the assessment of the Exposome. Thus, a targeted analysis of a wide range of contaminants in contact with humans on daily routines in urine was developed. The method focused on a list of 38 contaminants, including 12 pesticides, one metabolite of pesticide, seven veterinary drugs, five parabens, one UV filter, one plastic additive, two surfactants and nine substances found in different products present in the everyday human environment. These contaminants were analyzed by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS) with a quadrupole-time-of-flight (QqToF) instrument from a raw urinary matrix. A validation according to the FDA guidelines was employed to evaluate the specificity, linear or quadratic curve fitting, inter- and intra-day precision, accuracy and limits of detection and quantification (LOQ). The developed analysis allows for the quantification of 23 contaminants in the urine samples, with the LOQs ranging between 4.3 ng.mL(-1) and 113.2 ng.mL(-1). This method was applied to 17 urine samples. Among the targeted contaminants, four compounds were detected in samples. One of the contaminants (tributyl phosphate) was detected below the LOQ. The three others (4-hydroxybenzoic acid, sodium dodecylbenzenesulfonate and O,O-diethyl thiophosphate potassium) were detected but did not fulfill the validation criteria for quantification. Among these four compounds, two of them were found in all samples: tributyl phosphate and the surfactant sodium dodecylbenzenesulfonate.

Collaboration


Dive into the Audrey Buleté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne Garric

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Cren-Olivé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Cren-Olivé

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge