Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey E. K. Hutcheon is active.

Publication


Featured researches published by Audrey E. K. Hutcheon.


Cornea | 2005

Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy.

Marcelo V. Netto; Rajiv R. Mohan; Renato Ambrósio; Audrey E. K. Hutcheon; James D. Zieske; Steven E. Wilson

Purpose: The corneal wound healing response is of particular relevance for refractive surgical procedures since it is a major determinant of efficacy and safety. The purpose of this review is to provide an overview of the healing response in refractive surgery procedures. Methods: Literature review. Results: LASIK and PRK are the most common refractive procedures; however, alternative techniques, including LASEK, PRK with mitomycin C, and Epi-LASIK, have been developed in an attempt to overcome common complications. Clinical outcomes and a number of common complications are directly related to the healing process and the unpredictable nature of the associated corneal cellular response. These complications include overcorrection, undercorrection, regression, corneal stroma opacification, and many other side effects that have their roots in the biologic response to surgery. The corneal epithelium, stroma, nerves, inflammatory cells, and lacrimal glands are the main tissues and organs involved in the wound healing response to corneal surgical procedures. Complex cellular interactions mediated by cytokines and growth factors occur among the cells of the cornea, resulting in a highly variable biologic response. Among the best characterized processes are keratocyte apoptosis, keratocyte necrosis, keratocyte proliferation, migration of inflammatory cells, and myofibroblast generation. These cellular interactions are involved in extracellular matrix reorganization, stromal remodeling, wound contraction, and several other responses to surgical injury. Conclusions: A better understanding of the complete cascade of events involved in the corneal wound healing process and anomalies that lead to complications is critical to improve the efficacy and safety of refractive surgical procedures. Recent advances in understanding the biologic and molecular processes that contribute to the healing response bring hope that safe and effective pharmacologic modulators of the corneal wound healing response may soon be developed.


Experimental Eye Research | 2003

Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK.

Rahul R. Mohan; Audrey E. K. Hutcheon; Rosan Choi; Jong-Wook Hong; Jong-Soo Lee; Rajiv R. Mohan; Renato Ambrósio; James D. Zieske; Steven E. Wilson

The aim of this study was to semi-quantitatively analyze stromal cell apoptosis, stromal cell proliferation, and myofibroblast generation over time points from 4hr to 3 months in rabbit eyes having photorefractive keratectomy (PRK) or laser in situ keratomeliusis (LASIK). Stromal cell necrosis and inflammatory cell infiltration were also studied. PRK for low myopia (-4.5diopters [D]), PRK for high myopia (-9.0D), and LASIK for high myopia (-9.0D) were performed in rabbit eyes, and corneas were obtained for examination at 4, 24, and 72hr, 1 and 4 weeks, and 3 months after surgery. A total of 144 rabbits were included in the study. Stromal cell apoptosis, proliferation, and myofibroblast generation were evaluated semi-quantitatively by TUNEL assay, immunocytochemical analysis of Ki67, and immunocytochemical analysis of alpha-smooth muscle actin, respectively. Stromal cell necrosis and characteristics of other cell types in the stroma were evaluated by electron microscopy. Keratocyte apoptosis and the subsequent proliferation and generation of myofibroblasts were qualitatively and quantitatively different in PRK for high myopia compared to either PRK for low myopia or LASIK for high myopia. Stromal cell necrosis becomes a significant form of cell death by 24hr after injury and may involve corneal fibroblasts, myofibroblasts, and inflammatory cells. Large numbers of polymorphonuclear cells and monocytes invade the cornea by 24hr after surgery and persist for over 1 week. The qualitative and quantitative differences in the cellular wound healing response after PRK for high and low myopia and LASIK for high myopia are likely determinants of the clinical differences in refractive outcome and some of the complications, such as regression and haze, seen after these procedures.


Investigative Ophthalmology & Visual Science | 2010

Human Corneal Fibrosis: An In Vitro Model

Dimitris Karamichos; Xiaoqing Q Guo; Audrey E. K. Hutcheon; James D. Zieske

PURPOSE Corneal injury may ultimately lead to a scar by way of corneal fibrosis, which is characterized by the presence of myofibroblasts and improper deposition of extracellular matrix (ECM) components. TGF-beta1 is known to stimulate overproduction and deposition of ECM components. Previously, an in vitro three-dimensional (3-D) model of a corneal stroma was developed by using primary human corneal fibroblasts (HCFs) stimulated with stable vitamin C (VitC). This model mimics corneal development. The authors postulate that with the addition of TGF-beta1, a 3-D corneal scar model can be generated. METHODS HCFs were grown in four media conditions for 4 or 8 weeks: VitC only; VitC+TGF-beta1 for the entire time; VitC+TGF-beta1 for 1 week, then VitC only for 3 or 7 weeks; and VitC for 4 weeks, then VitC+TGF-beta1 for 4 weeks. Cultures were analyzed with TEM and indirect immunofluorescence. RESULTS Compared with the control, addition of TGF-beta1 increased construct thickness significantly, with maximum increase in constructs with TGF-beta1 present for the entire time-2.1- to 3.2-fold at 4 and 8 weeks, respectively. In all TGF-beta-treated cultures, cells became long and flat, numerous filamentous cells were seen, collagen levels increased, and long collagen fibrils were visible. Smooth muscle actin, cellular fibronectin, and type III collagen expression all appeared to increase. Cultures between weeks 4 and 8 showed minimal differences. CONCLUSIONS Human corneal fibroblasts stimulated by VitC and TGF-beta1 appear to generate a model that resembles processes observed in human corneal fibrosis. This model should be useful in examining matrix deposition and assembly in a wound-healing situation.


Journal of Tissue Engineering and Regenerative Medicine | 2011

Transforming growth factor-β3 regulates assembly of a non-fibrotic matrix in a 3D corneal model

Dimitrios Karamichos; Audrey E. K. Hutcheon; James D. Zieske

Corneal tissue engineering has attracted the attention of many researchers over the years, in part due to the corneas avascularity and relatively straightforward structure. However, the highly organized and structured nature of this optically clear tissue has presented a great challenge. We have previously developed a model in which human corneal fibroblasts (HCFs) are stimulated by a stable vitamin C (VitC) derivative to self‐assemble an extracellular matrix (ECM). Addition of TGFβ1 enhanced the assembly of ECM; however, it was accompanied by the upregulation of specific fibrotic markers. In this study, we tested the effects of all three TGFβ isoforms (‐β1, ‐β2 and ‐β3) on ECM production, as well as expression of fibrotic markers. HCFs were grown in four media conditions for 4 weeks: control, VitC only; T1, VitC + TGFβ1; T2, VitC + TGFβ2; and T3, VitC + TGFβ3. The cultures were analysed with western blots, TEM and indirect immunofluorescence (IF). Compared to controls, all TGFβ isoforms stimulated matrix production by about three‐fold. IF showed the presence of type III collagen and smooth muscle actin (SMA) in T1 and T2; however, T3 showed little to no expression. In western blots, T3 stimulated a lower type III:type I collagen ratio when compared to the other conditions. In addition, TEM indicated that T3 stimulated a higher level of matrix alignment and organization. HCFs stimulated by VitC and TGFβ3 appear to generate a matrix that mimics the normal adult or developing human cornea, whereas TGF‐β1 and ‐β2 drive the constructs towards a more fibrotic path. Copyright


Developmental Dynamics | 2008

Human primary corneal fibroblasts synthesize and deposit proteoglycans in long-term 3-D cultures

Ruiyi Ren; Audrey E. K. Hutcheon; Xiaoqing Q Guo; Nima Saeidi; Suzanna A. Melotti; Jeffrey W. Ruberti; James D. Zieske; Vickery Trinkaus-Randall

Our goal was to develop a 3‐D multi‐cellular construct using primary human corneal fibroblasts cultured on a disorganized collagen substrate in a scaffold‐free environment and to use it to determine the regulation of proteoglycans over an extended period of time (11 weeks). Electron micrographs revealed multi‐layered constructs with cells present in between alternating parallel and perpendicular arrays of fibrils. Type I collagen increased 2–4‐fold. Stromal proteoglycans including lumican, syndecan4, decorin, biglycan, mimecan, and perlecan were expressed. The presence of glycosaminoglycan chains was demonstrated for a subset of the core proteins (lumican, biglycan, and decorin) using lyase digestion. Cuprolinic blue–stained cultures showed that sulfated proteoglycans were present throughout the construct and most prominent in its mid‐region. The size of the Cuprolinic‐positive filaments resembled those previously reported in a human corneal stroma. Under the current culture conditions, the cells mimic a development or nonfibrotic repair phenotype. Developmental Dynamics 237:2705–2715, 2008.


Scientific Reports | 2015

In vitro model suggests oxidative stress involved in keratoconus disease

Dimitrios Karamichos; Audrey E. K. Hutcheon; Celeste B. Rich; Vickery Trinkaus-Randall; John M. Asara; James D. Zieske

Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.


PLOS ONE | 2014

A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

Dimitrios Karamichos; Martha L. Funderburgh; Audrey E. K. Hutcheon; James D. Zieske; Yiqin Du; Jian Wu; James L. Funderburgh

Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200–300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.


Experimental Eye Research | 2003

Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation

Steven E. Wilson; Rahul R. Mohan; Audrey E. K. Hutcheon; Rajiv R. Mohan; Renato Ambrósio; James D. Zieske; Jong-Wook Hong; Jong-Soo Lee

The purpose of this study was to examine the effects of the epithelium on processes involved in stromal wound healing. Lamellar epithelial-stromal flaps were produced in rabbit corneas with a microkeratome. Peripheral corneal epithelial tissue, central corneal epithelial tissue, or no epithelial tissue (control) was introduced beneath the flap. Corneas were removed at time points from 4 hr to 1 month after surgery. Tissue sections were analyzed with immunocytochemistry for Keratin 3 (K3) to detect epithelial antigen, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling (TUNEL) assay to detect apoptosis, immunocytochemistry for Ki67 to detect cell proliferation, and immunocytochemistry for alpha-smooth muscle actin (SMA) to detect myofibroblasts. K3 was detected at the level of the interface from 4 hr to 1 month after surgery in corneas in which epithelial tissue was introduced, but not control corneas, with the exception of one that developed epithelial in growth. Keratocyte apoptosis was significantly higher at 4 hr after flap formation in both groups in which corneal epithelial tissue was introduced beneath the flap compared with controls. Keratocyte proliferation was significantly greater at 72 hr in corneas in which epithelial tissue was introduced beneath the flap compared to the controls. Corneas in which epithelial tissue was introduced into the interface, but not control corneas, had stromal cells expressing alpha-SMA in the stroma anterior and posterior to the interface at 1 week and 1 month after surgery. This was also noted in the control cornea in which there was epithelial ingrowth. Signals derived from the corneal epithelium promote keratocyte apoptosis. Keratocyte proliferation is higher in corneas that have lamellar surgery when epithelial tissue is introduced into the interface. Epithelium-derived signals also participate in the generation and/or maintenance of myofibroblasts in the corneal stroma.


Biotechnology and Bioengineering | 2012

Disorganized collagen scaffold interferes with fibroblast mediated deposition of organized extracellular matrix in vitro

Nima Saeidi; Xiaoqing Guo; Audrey E. K. Hutcheon; Edward A. Sander; Shyam Sundar Bale; Suzanna A. Melotti; James D. Zieske; Vickery Trinkaus-Randall; Jeffrey W. Ruberti

Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold‐based and scaffold‐free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS—five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long‐term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick‐freeze/deep‐etch electron microscopy. Both the scaffold‐free and the collagen‐based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell‐derived matrix in the scaffold‐based constructs was significantly lower than that produced by scaffold‐free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell‐derived matrix. The production of highly organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of controlling fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response. Biotechnol. Bioeng. 2012; 109: 2683–2698.


Journal of Functional Biomaterials | 2012

Novel in Vitro Model for Keratoconus Disease

Dimitrios Karamichos; Ramin Zareian; Xiaoqing Guo; Audrey E. K. Hutcheon; Jeffrey W. Ruberti; James D. Zieske

Keratoconus is a disease where the cornea becomes cone-like due to structural thinning and ultimately leads to compromised corneal integrity and loss of vision. Currently, the therapeutic options are corrective lenses for early stages and surgery for advanced cases with no in vitro model available. In this study, we used human corneal fibroblasts (HCFs) and compared them to human Keratoconus fibroblasts (HKCs) cultured in a 3-dimensional (3D) model, in order to compare the expression and secretion of specific extracellular matrix (ECM) components. For four weeks, the cells were stimulated with a stable Vitamin C (VitC) derivative ± TGF-β1 or TGF-β3 (T1 and T3, respectively). After four weeks, HKCs stimulated with T1 and T3 were significantly thicker compared with Control (VitC only); however, HCF constructs were significantly thicker than HKCs under all conditions. Both cell types secreted copious amounts of type I and V collagens in their assembled, aligned collagen fibrils, which increased in the degree of alignment upon T3 stimulation. In contrast, only HKCs expressed high levels of corneal scarring markers, such as type III collagen, which was dramatically reduced with T3. HKCs expressed α-smooth muscle actin (SMA) under all conditions in contrast to HCFs, where T3 minimized SMA expression. Fast Fourier transform (FFT) data indicated that HKCs were more aligned when compared to HCFs, independent of treatments; however, HKC’s ECM showed the least degree of rotation. HKCs also secreted the most aligned type I collagen under T3 treatment, when compared to any condition and cell type. Overall, our model for Keratoconus disease studies is the first 3D in vitro tissue engineered model that can mimic the Keratoconus disease in vivo and may be a breakthrough in efforts to understand the progression of this disease.

Collaboration


Dive into the Audrey E. K. Hutcheon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoqing Q. Guo

Massachusetts Eye and Ear Infirmary

View shared research outputs
Researchain Logo
Decentralizing Knowledge