Audrey Hessel
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Audrey Hessel.
PLOS Pathogens | 2012
Inès Vigan-Womas; Micheline Guillotte; Alexandre Juillerat; Audrey Hessel; Bertrand Raynal; Patrick England; Jacques Cohen; Olivier Bertrand; Thierry Peyrard; Graham A. Bentley; Anita Lewit-Bentley; Odile Mercereau-Puijalon
The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α1 domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α1 and NTS-DBL1α1-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A1, weaker binding to groups A2 and B, and least binding to groups Ax and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α1-CIDR1γ, reveals extensive contacts between the DBL1α1 and CIDR1γ and shows that the NTS-DBL1α1 hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα1. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Alexandre Juillerat; Anita Lewit-Bentley; Micheline Guillotte; Stéphane Gangnard; Audrey Hessel; Bruno Baron; Inès Vigan-Womas; Patrick England; Odile Mercereau-Puijalon; Graham A. Bentley
The human malaria parasite Plasmodium falciparum can cause infected red blood cells (iRBC) to form rosettes with uninfected RBC, a phenotype associated with severe malaria. Rosetting is mediated by a subset of the Plasmodium falciparum membrane protein 1 (PfEMP1) variant adhesins expressed on the infected host-cell surface. Heparin and other sulfated oligosaccharides, however, can disrupt rosettes, suggesting that therapeutic approaches to this form of severe malaria are feasible. We present a structural and functional study of the N-terminal domain of PfEMP1 from the VarO variant comprising the N-terminal segment (NTS) and the first DBL domain (DBL1α1), which is directly implicated in rosetting. We demonstrate that NTS-DBL1α1-VarO binds to RBC and that heparin inhibits this interaction in a dose-dependent manner, thus mimicking heparin-mediated rosette disruption. We have determined the crystal structure of NTS-DBL1α1, showing that NTS, previously thought to be a structurally independent component of PfEMP1, forms an integral part of the DBL1α domain. Using mutagenesis and docking studies, we have located the heparin-binding site, which includes NTS. NTS, unique to the DBL α-class domain, is thus an intrinsic structural and functional component of the N-terminal VarO domain. The specific interaction observed with heparin opens the way for developing antirosetting therapeutic strategies.
Journal of the American Chemical Society | 2013
Ana-Cristina Sotomayor-Pérez; Orso Subrini; Audrey Hessel; Daniel Ladant; Alexandre Chenal
Macromolecular crowding affects most chemical equilibria in living cells, as the presence of high concentrations of macromolecules sterically restricts the available space. Here, we characterized the influence of crowding on a prototypical RTX protein, RC(L). RTX (Repeat in ToXin) motifs are calcium-binding nonapeptide sequences that are found in many virulence factors produced by Gram-negative bacteria and secreted by dedicated type 1 secretion systems. RC(L) is an attractive model to investigate the effect of molecular crowding on ligand-induced protein folding, as it shifts from intrinsically disordered conformations (apo-form) to a stable structure upon calcium binding (holo-form). It thus offers the rare opportunity to characterize the crowding effects on the same polypeptide chain under two drastically distinct folding states. We showed that the crowding agent Ficoll70 did not affect the structural content of the apo-state and holo-state of RC(L) but increased the protein affinity for calcium. Moreover, Ficoll70 strongly stabilized both states of RC(L), increasing their half-melting temperature, without affecting enthalpy changes. The power law dependence of the melting temperature increase (ΔT(m)) on the volume fraction (φ) followed theoretical excluded volume predictions and allowed the estimation of the Flory exponent (ν) of the thermally unfolded polypeptide chain in both states. Altogether, our data suggest that, in the apo-state as found in the crowded bacterial cytosol, RTX proteins adopt extended unfolded conformations that may facilitate protein export by the type I secretion machinery. Subsequently, crowding also enhances the calcium-dependent folding and stability of RTX proteins once secreted in the extracellular milieu.
Journal of Biological Chemistry | 2013
Orso Subrini; Ana-Cristina Sotomayor-Pérez; Audrey Hessel; Johanna Spiaczka-Karst; Edithe Selwa; Nicolas Sapay; Rémi Veneziano; Jonathan Pansieri; Joël Chopineau; Daniel Ladant; Alexandre Chenal
Background: The translocation of the Bordetella pertussis CyaA toxin across membrane is still poorly understood. Results: A membrane-active peptide isolated from the CyaA toxin is characterized by biophysical approaches. Conclusion: The α-helical peptide is inserted in plane and induces membrane permeabilization. Significance: The membrane-destabilizing activity of this peptide may assist the initial steps of the CyaA translocation process. Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1–384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1–489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375–485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454–485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454–485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.
Journal of Biological Chemistry | 2014
Johanna C. Karst; V. Yvette Ntsogo Enguéné; Sara E. Cannella; Orso Subrini; Audrey Hessel; Sylvain Debard; Daniel Ladant; Alexandre Chenal
Background: Due to its hydrophobic character, the adenylate cyclase (CyaA) toxin from Bordetella pertussis is prone to aggregate into multimeric forms. Results: We define the experimental conditions required to fold CyaA into a monomeric state. Conclusion: Molecular confinement, post-translational acylation, and calcium binding are critical for CyaA folding into a monomeric and cytotoxic form. Significance: Monomeric CyaA opens the way for structural and functional studies. The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
Malaria Journal | 2016
Micheline Guillotte; Farida Nato; Alexandre Juillerat; Audrey Hessel; F. Marchand; Anita Lewit-Bentley; Graham A. Bentley; Inès Vigan-Womas; Odile Mercereau-Puijalon
BackgroundRosetting, namely the capacity of the Plasmodium falciparum-infected red blood cells to bind uninfected RBCs, is commonly observed in African children with severe malaria. Rosetting results from specific interactions between a subset of variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins encoded by var genes, serum components and RBC receptors. Rosette formation is a redundant phenotype, as there exists more than one var gene encoding a rosette-mediating PfEMP1 in each genome and hence a diverse array of underlying interactions. Moreover, field diversity creates a large panel of rosetting-associated serotypes and studies with human immune sera indicate that surface-reacting antibodies are essentially variant-specific. To gain better insight into the interactions involved in rosetting and map surface epitopes, a panel of monoclonal antibodies (mAbs) was investigated.MethodsMonoclonal antibodies were isolated from mice immunized with PfEMP1-VarO recombinant domains. They were characterized using ELISA and reactivity with the native PfEMP1-VarO adhesin on immunoblots of reduced and unreduced extracts, as well as SDS-extracts of Palo Alto 89F5 VarO schizonts. Functionality was assessed using inhibition of Palo Alto 89F5 VarO rosette formation and disruption of Palo Alto 89F5 VarO rosettes. Competition ELISAs were performed with biotinylated antibodies against DBL1 to identify reactivity groups. Specificity of mAbs reacting with the DBL1 adhesion domain was explored using recombinant proteins carrying mutations abolishing RBC binding or binding to heparin, a potent inhibitor of rosette formation.ResultsDomain-specific, surface-reacting mAbs were obtained for four individual domains (DBL1, CIDR1, DBL2, DBL4). Monoclonal antibodies reacting with DBL1 potently inhibited the formation of rosettes and disrupted Palo Alto 89F5 VarO rosettes. Most surface-reactive mAbs and all mAbs interfering with rosetting reacted on parasite immunoblots with disulfide bond-dependent PfEMP1 epitopes. Based on competition ELISA and binding to mutant DBL1 domains, two distinct binding sites for rosette-disrupting mAbs were identified in close proximity to the RBC-binding site.ConclusionsRosette-inhibitory antibodies bind to conformation-dependent epitopes located close to the RBC-binding site and distant from the heparin-binding site. These results provide novel clues for a rational intervention strategy that targets rosetting.
PLOS ONE | 2015
Micheline Guillotte; Alexandre Juillerat; Sébastien Igonet; Audrey Hessel; Stéphane Petres; Elodie Crublet; Anita Lewit-Bentley; Graham A. Bentley; Inès Vigan-Womas; Odile Mercereau-Puijalon
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
Toxicon | 2018
Darragh P. O'Brien; Sara E. Cannella; Dominique M. Durand; Véronique Y. Ntsogo Eenguene; Belén Hernández; Mahmoud Ghomi; Orso Subrini; Audrey Hessel; Christian Malosse; Véronique Hourdel; Patrice Vachette; Julia Chamot-Rooke; Sébastien Brier; Daniel Ladant; Alexandre Chenal
Toxicon | 2018
Darragh P. O'Brien; Ana Cristina Sotomayor Pérez; Johanna C. Karst; Sara E. Cannella; Véronique Yvette Ntsogo Enguéné; Audrey Hessel; Dorothée Raoux-Barbot; Alexis Voegele; Orso Subrini; Marilyne Davi; J. Iñaki Guijarro; Bertrand Raynal; Bruno Baron; Patrick England; Belén Hernández; Mahmoud Ghomi; Véronique Hourdel; Christian Malosse; Julia Chamot-Rooke; Patrice Vachette; D. Durand; Sébastien Brier; Daniel Ladant; Alexandre Chenal
Toxicon | 2016
Sara E. Cannella; V.Y. Ntsogo Enguene; Johanna C. Karst; Audrey Hessel; Orso Subrini; A.C. Sotomayor-Perez; Bertrand Raynal; Daniel Ladant; Alexandre Chenal