Audrey J. Stone
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Audrey J. Stone.
The Journal of Physiology | 2013
Katsuya Yamauchi; Joyce S. Kim; Audrey J. Stone; Victor Ruiz-Velasco; Marc P. Kaufman
• In decerebrated rats, the exercise pressor reflex arising from a hindlimb whose femoral artery was occluded for 72 h was significantly higher than that arising from a hindlimb whose femoral artery was freely perfused. • Blockade of endoperoxide 4 receptors, but not blockade of endoperoxide 3 receptors, prevented the exaggerated exercise pressor reflex in rats with ligated femoral arteries. • Blockade of endoperoxide 3 or 4 receptors in rats with freely perfused femoral arteries had no effect on the exercise pressor reflex. • Western immunoblots showed that ligation of the femoral artery for 72 h increased the endoperoxide 4 receptor protein in the L4 and L5 dorsal root ganglia over their freely perfused counterparts by 24% (P < 0.05).
American Journal of Physiology-heart and Circulatory Physiology | 2014
Katsuya Yamauchi; Hirotsugu Tsuchimochi; Audrey J. Stone; Sean D. Stocker; Marc P. Kaufman
Increased dietary salt in rats has been shown to sensitize central sympathetic circuits and enhance sympathetic responses to several stressors, including hyperinsulinemia, intracerebroventricular injection of angiotensin, and electrical stimulation of sciatic nerve afferents. These findings prompted us to test the hypothesis that increased dietary salt enhanced the exercise pressor reflex. Male Sprague-Dawley rats were fed 0.1% (low) or 4.0% (high) NaCl chow for 2 to 3 wk. On the day of the experiment, the rats were decerebrated, and the hind limb muscles were statically contracted for 30 s by electrically stimulating the cut peripheral ends of the L4 and L5 ventral roots. We found that contraction produced a significantly greater increase in mean arterial pressure of rats fed 4.0% (n = 26) vs. 0.1% (n = 22) NaCl (24 ± 2 vs. 15 ± 2 mmHg, respectively; P < 0.05). Baseline mean arterial pressure was not different between groups (0.1%, 77 ± 4 vs. 4.0% NaCl, 80 ± 3 mmHg). Likewise, the tension time indexes were not different between the two groups (P = 0.42). Section of the L4 and L5 dorsal roots greatly attenuated both the pressor and cardioaccelerator responses to contraction in both groups of rats, an effect showing that the responses were reflex in origin. Finally, electrical stimulation of the lumbar sympathetic chain produced similar increases in mean arterial pressure and decreases in femoral arterial blood flow and conductance between rats fed 0.1% vs. 4.0% NaCl diets. We conclude that increased dietary salt enhances the exercise pressor reflex.
Autonomic Neuroscience: Basic and Clinical | 2015
Audrey J. Stone; Marc P. Kaufman
The exercise pressor reflex contributes to increases in cardiovascular and ventilatory function during exercise. These reflexive increases are caused by both mechanical stimulation and metabolic stimulation of group III and IV afferents with endings in contracting skeletal muscle. Patients with peripheral artery disease (PAD) have an augmented exercise pressor reflex. Recently, an animal model of PAD was established which allows further investigation of possible mechanisms involved in this augmented reflex. Earlier studies have identified ASIC3 channels, bradykinin receptors, P2X receptors, endoperoxide receptors, and thromboxane receptors as playing a role in evoking the exercise pressor reflex in healthy rats. This review focuses on recent studies using a rat model of PAD in order to determine possible mechanisms contributing to the exaggerated exercise pressor reflex seen in patients with this disease.
Journal of Neurophysiology | 2015
Audrey J. Stone; Steven W. Copp; Jennifer L. McCord; Marc P. Kaufman
Previous evidence has shown that ligating the femoral artery for 72 h resulted in an exaggerated exercise pressor reflex. To provide electrophysiological evidence for this finding, we examined in decerebrated rats whose femoral arteries were either freely perfused or ligated for 72 h the responses of thin-fiber (i.e., groups III and IV) afferents to static contraction of the hindlimb muscles. We found that contraction increased the combined activity of group III and IV afferents in both freely perfused (n = 29; baseline: 0.3 ± 0.1 imp/s, contraction: 0.8 ± 0.2 imp/s; P < 0.05) and ligated rats (n = 28; baseline: 0.4 ± 0.1 imp/s, contraction: 1.4 ± 0.1 imp/s; P < 0.05). Most importantly, the contraction-induced increase in afferent activity was greater in ligated rats than it was in freely perfused rats (P = 0.005). In addition, the responses of group III afferents to contraction in ligated rats (n = 15; baseline 0.3 ± 0.1 imp/s, contraction 1.5 ± 0.2 imp/s) were greater (P = 0.024) than the responses to contraction in freely perfused rats (n = 18; baseline 0.3 ± 0.1 imp/s, contraction 0.9 ± 0.2 imp/s). Likewise, the responses of group IV afferents to contraction in ligated rats (n = 13; baseline 0.5 ± 0.1 imp/s, contraction 1.3 ± 0.2 imp/s) were greater (P = 0.048) than the responses of group IV afferents in freely perfused rats (n = 11; baseline 0.3 ± 0.1 imp/s, contraction 0.6 ± 0.2 imp/s). We conclude that both group III and IV afferents contribute to the exaggeration of the exercise pressor reflex induced by femoral artery ligation.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014
Steven W. Copp; Audrey J. Stone; Katsuya Yamauchi; Marc P. Kaufman
The exercise pressor reflex is greater in rats with ligated femoral arteries than it is in rats with freely perfused femoral arteries. The exaggerated reflex in rats with ligated arteries is attenuated by stimulation of μ-opioid and δ-opioid receptors on the peripheral endings of thin-fiber muscle afferents. The effect of stimulation of κ-opioid receptors on the exercise pressor reflex is unknown. We tested the hypothesis that stimulation of κ-opioid receptors attenuates the exercise pressor reflex in rats with ligated, but not freely perfused, femoral arteries. The pressor responses to static contraction were compared before and after femoral arterial or intrathecal injection of the κ-opioid receptor agonist U62066 (1, 10, and 100 μg). Femoral arterial injection of U62066 did not attenuate the pressor responses to contraction in either group of rats. Likewise, intrathecal injection of U62066 did not attenuate the pressor response to contraction in rats with freely perfused femoral arteries. In contrast, intrathecal injection of 10 and 100 μg of U62066 attenuated the pressor response to contraction in rats with ligated femoral arteries, an effect that was blocked by prior intrathecal injection of the κ-opioid receptor antagonist nor-binaltorphimine. In rats with ligated femoral arteries, the pressor response to stimulation of peripheral chemoreceptors by sodium cyanide was not changed by intrathecal U62066 injections, indicating that these injections had no direct effect on the sympathetic outflow. We conclude that stimulation of spinal, but not peripheral, κ-opioid receptors attenuates the exaggerated exercise pressor reflex in rats with ligated femoral arteries.
Neuroscience Letters | 2013
Anna K. Leal; Audrey J. Stone; Katsuya Yamauchi; Jennifer L. McCord; Marc P. Kaufman
Recent evidence has been presented demonstrating that group III mechanoreceptors comprise an important part of the sensory arm of the exercise pressor reflex, which in turn functions to increase arterial blood flow to contracting skeletal muscles. Although group III afferents are stimulated by mechanical distortion of their receptive fields, they are also stimulated by bradykinin, which is produced by skeletal muscle when it contracts. Moreover, blockade of B (bradykinin)2 receptors has been shown to decrease the magnitude of the exercise pressor reflex. Nevertheless, the effect of blockade of B2 receptors on responses of group III afferents to contraction is not known. We therefore determined the effect of B2 receptor blockade with HOE 140 (40μg/kg) on the responses to both static and intermittent contraction of group III afferents with endings in the triceps surae muscle of decerebrated unanesthetized cats. We found that HOE 140 significantly attenuated (P=0.04) the responses of 14 group III afferents to static contraction, but did not significantly attenuate (P=0.16) the responses of 16 group III afferents to intermittent contraction. The attenuation induced by HOE 140 was present throughout the static contraction period, and led us to speculate that blockade of B2 receptors on the endings of group III afferents decreased their sensitivity to mechanical events occurring in the working muscles.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Steven W. Copp; Audrey J. Stone; Jianhua Li; Marc P. Kaufman
IL-6 signaling via the soluble IL-6 receptor (sIL-6r) has been shown to increase primary afferent responsiveness to noxious stimuli. This finding prompted us to test the hypothesis that IL-6 and sIL-6r would increase the exercise pressor reflex in decerebrate rats with freely perfused femoral arteries. We also tested the hypothesis that soluble glycoprotein (sgp)130, an inhibitor of IL-6/sIL-6r signaling, would decrease the exaggerated exercise pressor reflex that is found in decerebrate rats with ligated femoral arteries. In rats with freely perfused femoral arteries, coinjection of 50 ng of IL-6 and sIL-6r into the arterial supply of the hindlimb significantly increased the peak pressor response to static (control: 14 ± 3 mmHg and IL-6/sIL-6r: 17 ± 2 mmHg, P = 0.03) and intermittent isometric (control: 10 ± 2 mmHg and IL-6/sIL-6r: 15 ± 4 mmHg, P = 0.03) hindlimb muscle contraction. In rats with ligated femoral arteries, injection of 50 ng of sgp130 into the arterial supply of the hindlimb reduced the peak pressor response to static (control: 24 ± 2 mmHg and sgp130: 16 ± 3 mmHg, P = 0.01) and intermittent isometric (control: 16 ± 2 mmHg and sgp130: 13 ± 2 mmHg, P = 0.04) hindlimb muscle contraction, whereas there was no effect of sgp130 on the exercise pressor reflex in rats with freely perfused femoral arteries. We conclude that coinjection of exogenous IL-6 and sIL-6r increased the exercise pressor reflex in rats with freely perfused femoral arteries. More importantly, we also conclude that IL-6 and sIL-6r play an endogenous role in evoking the exercise pressor reflex in rats with ligated femoral arteries but not in rats with freely perfused femoral arteries.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Katsuya Yamauchi; Audrey J. Stone; Sean D. Stocker; Marc P. Kaufman
We reported previously that tempol attenuated the exercise pressor and muscle mechanoreceptor reflexes in rats whose femoral arteries were ligated, whereas tempol did not attenuate these reflexes in rats whose femoral arteries were freely perfused. Although the mechanism whereby tempol attenuated these reflexes in rats whose femoral artery was ligated was independent of its ability to scavenge reactive oxygen species, its nature remains unclear. An alternative explanation for the tempol-induced attenuation of these reflexes involves ATP-sensitive potassium channels (K(ATP)) and calcium-activated potassium channels (BK(Ca)), both of which are opened by tempol. We tested the likelihood of this explanation by measuring the effects of either glibenclamide (0.1 mg/kg), which blocks K(ATP) channels, or iberiotoxin (20 or 40 μg/kg), which blocks BK(Ca) channels, on the tempol-induced attenuation of the exercise pressor and muscle mechanoreceptor reflexes in decerebrated rats whose femoral arteries were ligated. We found that glibenclamide prevented the tempol-induced attenuation of both reflexes, whereas iberiotoxin did not. We also found that the amount of protein comprising the pore of the K(ATP) channel in the dorsal root ganglia innervating hindlimbs whose femoral artery was ligated was significantly greater than that in the dorsal root ganglia innervating hindlimbs whose femoral arteries were freely perfused. In contrast, the amounts of protein comprising the BK(Ca) channel in the dorsal root ganglia innervating the ligated and freely perfused hindlimbs were not different. We conclude that tempol attenuated both reflexes by opening K(ATP) channels, an effect that hyperpolarized muscle afferents stimulated by static contraction or tendon stretch.
Neuroscience Letters | 2013
Audrey J. Stone; Joyce S. Kim; Katsuya Yamauchi; Victor Ruiz-Velasco; Marc P. Kaufman
In decerebrated rats, we determined the dose of A803467, a NaV 1.8 antagonist, needed to attenuate the reflex pressor responses to femoral arterial injections of lactic acid (24 mM; ~0.1 ml) and capsaicin (0.1 μg), agents which stimulate thin fiber afferents having NaV 1.8 channels. We also determined whether the dose of A803467 needed to attenuate these reflex responses affected the responses of muscle spindle afferents to tendon stretch and succinylcholine (200 μg). Spindle afferents are not supplied with NaV 1.8 channels, and consequently their responses to these stimuli should not be influenced by A803467. Pressor responses to lactic acid and capsaicin were not altered by 500 μg of A803467 (n=6). A803467 in a dose of 1mg, however, significantly reduced (p<0.05; n=12) the pressor responses to lactic acid (23 ± 5 to 7 ± 3 Δmm Hg) and capsaicin (47 ± 5 to 31 ± 5 ΔmmHg). Surprisingly, we also found that 1mg of A803467 reduced the responses of 10 spindle afferents to succinylcholine (34 ± 11 to 4 ± 3 Δimp/s; p<0.05) and stretch (83 ± 17 to 0.4 ± 1 Δimp/s; p<0.05). We conclude that A803467 reduces the reflex response to lactic acid and capsaicin; however, it may be working on multiple channels, including NaV 1.8, other NaVs as well as voltage-gated calcium channels.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015
Audrey J. Stone; Steven W. Copp; Marc P. Kaufman
Voltage-gated sodium channels (NaV) 1.7 are highly expressed on the axons of somatic afferent neurons and are thought to play an important role in the signaling of inflammatory pain. NaV 1.7 channels are classified as tetrodotoxin (TTX)-sensitive, meaning that they are blocked by TTX concentrations of less than 300 nM. These findings prompted us to determine in decerebrated, unanesthetized rats, the role played by NaV 1.7 channels in the transmission of muscle afferent input evoking the exercise pressor reflex. We first showed that the exercise pressor reflex, which was evoked by static contraction of the triceps surae muscles, was reversibly attenuated by application of 50 nM TTX, but not 5 nM TTX, to the L4-L5 dorsal roots (control: 21 ± 1 mmHg, TTX: 8 ± 2 mmHg, recovery: 21 ± 3 mmHg; n = 6; P < 0.01). We next found that the peak pressor responses to contraction were significantly attenuated by dorsal root application of 100 nM Ssm6a, a compound that is a selective NaV 1.7 channel inhibitor. Removal of Ssm6a restored the reflex to its control level (control: 19 ± 3 mmHg, Ssm6a: 10 ± 1 mmHg, recovery: 19 ± 4 mmHg; n = 6; P < 0.05). Compound action potentials recorded from the L4 and L5 dorsal roots and evoked by single-pulse stimulation of the sciatic nerve showed that both TTX and Ssm6a attenuated input from group III, as well as group IV afferents. We conclude that NaV 1.7 channels play a role in the thin-fiber muscle afferent pathway evoking the exercise pressor reflex.