Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where August B. Smit is active.

Publication


Featured researches published by August B. Smit.


Nature | 2001

Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.

Katjuša Brejc; W. van Dijk; R.V Klaassen; M. Schuurmans; J. van der Oost; August B. Smit; Titia K. Sixma

Pentameric ligand gated ion-channels, or Cys-loop receptors, mediate rapid chemical transmission of signals. This superfamily of allosteric transmembrane proteins includes the nicotinic acetylcholine (nAChR), serotonin 5-HT3, γ-aminobutyric-acid (GABAA and GABAC) and glycine receptors. Biochemical and electrophysiological information on the prototypic nAChRs is abundant but structural data at atomic resolution have been missing. Here we present the crystal structure of molluscan acetylcholine-binding protein (AChBP), a structural and functional homologue of the amino-terminal ligand-binding domain of an nAChR α-subunit. In the AChBP homopentamer, the protomers have an immunoglobulin-like topology. Ligand-binding sites are located at each of five subunit interfaces and contain residues contributed by biochemically determined ‘loops’ A to F. The subunit interfaces are highly variable within the ion-channel family, whereas the conserved residues stabilize the protomer fold. This AChBP structure is relevant for the development of drugs against, for example, Alzheimer’s disease and nicotine addiction.


WOS | 2013

Genome-wide association analysis identifies 13 new risk loci for schizophrenia

Stephan Ripke; Colm O'Dushlaine; Jennifer L. Moran; Anna K. Kaehler; Susanne Akterin; Sarah E. Bergen; Ann L. Collins; James J. Crowley; Menachem Fromer; Yunjung Kim; Sang Hong Lee; Patrik K. E. Magnusson; Nick Sanchez; Eli A. Stahl; Stephanie Williams; Naomi R. Wray; Kai Xia; Francesco Bettella; Anders D. Børglum; Brendan Bulik-Sullivan; Paul Cormican; Nicholas John Craddock; Christiaan de Leeuw; Naser Durmishi; Michael Gill; V. E. Golimbet; Marian Lindsay Hamshere; Peter Holmans; David M. Hougaard; Kenneth S. Kendler

Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300–10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.


Neuron | 2004

Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors as Studied in Achbp Crystal Structures

Patrick H. N. Celie; Sarah E van Rossum-Fikkert; Willem J. van Dijk; Katjuša Brejc; August B. Smit; Titia K. Sixma

Nicotinic acetylcholine receptors are prototypes for the pharmaceutically important family of pentameric ligand-gated ion channels. Here we present atomic resolution structures of nicotine and carbamylcholine binding to AChBP, a water-soluble homolog of the ligand binding domain of nicotinic receptors and their family members, GABAA, GABAC, 5HT3 serotonin, and glycine receptors. Ligand binding is driven by enthalpy and is accompanied by conformational changes in the ligand binding site. Residues in the binding site contract around the ligand, with the largest movement in the C loop. As expected, the binding is characterized by substantial aromatic and hydrophobic contributions, but additionally there are close contacts between protein oxygens and positively charged groups in the ligands. The higher affinity of nicotine is due to a main chain hydrogen bond with the B loop and a closer packing of the aromatic groups. These structures will be useful tools for the development of new drugs involving nicotinic acetylcholine receptor-associated diseases.


Nature | 2001

A glia-derived acetylcholine-binding protein that modulates synaptic transmission

August B. Smit; Naweed I. Syed; Dick Schaap; Jan van Minnen; Judith Klumperman; Karel S. Kits; Hans Lodder; Roel C. van der Schors; René van Elk; Bertram Sorgedrager; Katju Sbreve; a Brejc; Titia K. Sixma; W.P.M. Geraerts

There is accumulating evidence that glial cells actively modulate neuronal synaptic transmission. We identified a glia-derived soluble acetylcholine-binding protein (AChBP), which is a naturally occurring analogue of the ligand-binding domains of the nicotinic acetylcholine receptors (nAChRs). Like the nAChRs, it assembles into a homopentamer with ligand-binding characteristics that are typical for a nicotinic receptor; unlike the nAChRs, however, it lacks the domains to form a transmembrane ion channel. Presynaptic release of acetylcholine induces the secretion of AChBP through the glial secretory pathway. We describe a molecular and cellular mechanism by which glial cells release AChBP in the synaptic cleft, and propose a model for how they actively regulate cholinergic transmission between neurons in the central nervous system.


The Journal of Neuroscience | 2005

Differential Transport and Local Translation of Cytoskeletal, Injury-Response, and Neurodegeneration Protein mRNAs in Axons

Dianna E. Willis; Ka Wan Li; Jun-Qi Zheng; Jay H. Chang; August B. Smit; Theresa K. Kelly; Tanuja T. Merianda; James Sylvester; Jan van Minnen; Jeffery L. Twiss

Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here, we used axons purified from cultures of injury-conditioned adult dorsal root ganglion (DRG) neurons and proteomics methodology to identify axonally synthesized proteins. Reverse transcription (RT)-PCR from axonal preparations was used to confirm that the mRNA for each identified protein extended into the DRG axons. Proteins and the encoding mRNAs for the cytoskeletal proteins β-actin, peripherin, vimentin, γ-tropomyosin 3, and cofilin 1 were present in the axonal preparations. In addition to the cytoskeletal elements, several heat shock proteins (HSP27, HSP60, HSP70, grp75, αB crystallin), resident endoplasmic reticulum (ER) proteins (calreticulin, grp78/BiP, ERp29), proteins associated with neurodegenerative diseases (ubiquitin C-terminal hydrolase L1, rat ortholog of human DJ-1/Park7, γ-synuclein, superoxide dismutase 1), anti-oxidant proteins (peroxiredoxins 1 and 6), and metabolic proteins (e.g., phosphoglycerate kinase 1 (PGK 1), α enolase, aldolase C/Zebrin II) were included among the axonally synthesized proteins. Detection of the mRNAs encoding each of the axonally synthesized proteins identified by mass spectrometry in the axonal compartment indicates that the DRG axons have the potential to synthesize a complex population of proteins. Local treatment of the DRG axons with NGF or BDNF increased levels of cytoskeletal mRNAs into the axonal compartment by twofold to fivefold but had no effect on levels of the other axonal mRNAs studied. Neurotrophins selectively increased transport of β-actin, peripherin, and vimentin mRNAs from the cell body into the axons rather than changing transcription or mRNA survival in the axonal compartment.


Nature Structural & Molecular Biology | 2005

Crystal Structure of Nicotinic Acetylcholine Receptor Homolog Achbp in Complex with an Alpha-Conotoxin Pnia Variant

Patrick H. N. Celie; Igor E. Kasheverov; Dmitry Yu. Mordvintsev; Ron C. Hogg; Pim van Nierop; René van Elk; Sarah E van Rossum-Fikkert; Maxim N. Zhmak; Daniel Bertrand; Victor I. Tsetlin; Titia K. Sixma; August B. Smit

Conotoxins (Ctx) form a large family of peptide toxins from cone snail venoms that act on a broad spectrum of ion channels and receptors. The subgroup α-Ctx specifically and selectively binds to subtypes of nicotinic acetylcholine receptors (nAChRs), which are targets for treatment of several neurological disorders. Here we present the structure at a resolution of 2.4 Å of α-Ctx PnIA (A10L D14K), a potent blocker of the α7-nAChR, bound with high affinity to acetylcholine binding protein (AChBP), the prototype for the ligand-binding domains of the nAChR superfamily. α-Ctx is buried deep within the ligand-binding site and interacts with residues on both faces of adjacent subunits. The toxin itself does not change conformation, but displaces the C loop of AChBP and induces a rigid-body subunit movement. Knowledge of these contacts could facilitate the rational design of drug leads using the Ctx framework and may lead to compounds with increased receptor subtype selectivity.


Neuron | 2007

Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex.

Jonathan J. Couey; Rhiannon M. Meredith; Sabine Spijker; Rogier B. Poorthuis; August B. Smit; Arjen B. Brussaard; Huibert D. Mansvelder

Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotines effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotines actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.


Science | 2010

CKAMP44: A Brain-Specific Protein Attenuating Short-Term Synaptic Plasticity in the Dentate Gyrus

Jakob von Engelhardt; Volker Mack; Rolf Sprengel; Netta Kavenstock; Ka Wan Li; Yael Stern-Bach; August B. Smit; Peter H. Seeburg; Hannah Monyer

Dancing with AMPARs A type of transmembrane receptor for glutamate, known as AMPAR, mediates most of the fast excitatory transmission in the mammalian central nervous system. Their function is regulated by the composition of their subunits, posttranslational modifications, and protein-protein interactions. Recently, several proteins that interact with AMPARs have been identified that affect their subcellular localization, synaptic stabilization, and kinetics. Using proteomic analysis, immunohistochemistry, and electrophysiology, von Engelhardt et al. (p. 1518, published online 25 February; see the Perspective by Farrant and Cull-Candy) identified a protein, CKAMP44, which modulates postsynaptic AMPA receptor gating, deactivation, and desentization. A synaptic protein that regulates postsynaptic AMPA receptor responses has been cloned and functionally characterized. CKAMP44, identified here by a proteomic approach, is a brain-specific type I transmembrane protein that associates with AMPA receptors in synaptic spines. CKAMP44 expressed in Xenopus oocytes reduced GluA1- and A2-mediated steady-state currents, but did not affect kainate- or N-methyl- d-aspartate (NMDA) receptor–mediated currents. Mouse hippocampal CA1 pyramidal neurons expressed CKAMP44 at low abundance, and overexpression of CKAMP44 led to stronger and faster AMPA receptor desensitization, slower recovery from desensitization, and a reduction in the paired-pulse ratio of AMPA currents. By contrast, dentate gyrus granule cells exhibited strong CKAMP44 expression, and CKAMP44 knockout increased the paired-pulse ratio of AMPA currents in lateral and medial perforant path–granule cell synapses. CKAMP44 thus modulates short-term plasticity at specific excitatory synapses.


Nature Neuroscience | 2008

Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking

Michel C. Van den Oever; Natalia A. Goriounova; Ka Wan Li; Roel C. van der Schors; Rob Binnekade; Anton N. M. Schoffelmeer; Huibert D. Mansvelder; August B. Smit; Sabine Spijker; Taco J. De Vries

Associative learning processes have an important role in the initiation and persistence of heroin-seeking. Here we show in a rat self-administration model that reexposure to cues previously associated with heroin results in downregulation of AMPA receptor subunit GluR2 and concomitant upregulation of clathrin-coat assembly protein AP2m1 in synaptic membranes of the medial prefrontal cortex (mPFC). Reduced AMPA receptor expression in synaptic membranes was associated with a decreased AMPA/NMDA current ratio and increased rectification index in mPFC pyramidal neurons. Systemic or ventral (but not dorsal) mPFC injections of a peptide inhibiting GluR2 endocytosis attenuated both the rectification index and cue-induced relapse to heroin-seeking, without affecting sucrose-seeking. We conclude that GluR2 receptor endocytosis and the resulting synaptic depression in ventral mPFC are crucial for cue-induced relapse to heroin-seeking. As reexposure to conditioned stimuli is a major cause for heroin relapse, inhibition of GluR2 endocytosis may provide a new target for the treatment of heroin addiction.


The EMBO Journal | 2007

Achbp-Targeted Alpha-Conotoxin Correlates Distinct Binding Orientations with Nachr Subtype Selectivity

Sébastien Dutertre; Chris Ulens; Regina Büttner; Alexander Fish; René van Elk; Yvonne Kendel; Gene Hopping; Paul F. Alewood; Christina I. Schroeder; Annette Nicke; August B. Smit; Titia K. Sixma; Richard J. Lewis

Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine‐binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand‐binding domain, to discover a novel α‐conotoxin (α‐TxIA) in the venom of Conus textile. α‐TxIA bound with high affinity to AChBPs from different species and selectively targeted the α3β2 nAChR subtype. A co‐crystal structure of Ac‐AChBP with the enhanced potency analog TxIA(A10L), revealed a 20° backbone tilt compared to other AChBP–conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac‐AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co‐crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype‐selective ligands with therapeutic potential in nAChR‐related diseases.

Collaboration


Dive into the August B. Smit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ka Wan Li

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Maarten Loos

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Titia K. Sixma

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge