Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Auke J. van Heel is active.

Publication


Featured researches published by Auke J. van Heel.


Nucleic Acids Research | 2013

BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides

Auke J. van Heel; Anne de Jong; Manuel Montalbán-López; Jan Kok; Oscar P. Kuipers

Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides. BAGEL3 uses an identification approach that combines direct mining for the gene and indirect mining via context genes. Especially for heavily modified peptides like lanthipeptides, sactipeptides, glycocins and others, this genetic context harbors valuable information that is used for mining purposes. The bacteriocin and context protein databases have been updated and it is now easy for users to submit novel bacteriocins or RiPPs. The output has been simplified to allow user-friendly analysis of the results, in particular for large (meta-genomic) datasets. The genetic context of identified candidate genes is fully annotated. As input, BAGEL3 uses FASTA DNA sequences or folders containing multiple FASTA formatted files. BAGEL3 is freely accessible at http://bagel.molgenrug.nl.


Nucleic Acids Research | 2010

BAGEL2: mining for bacteriocins in genomic data

Anne de Jong; Auke J. van Heel; Jan Kok; Oscar P. Kuipers

Mining bacterial genomes for bacteriocins is a challenging task due to the substantial structure and sequence diversity, and generally small sizes, of these antimicrobial peptides. Major progress in the research of antimicrobial peptides and the ever-increasing quantities of genomic data, varying from (un)finished genomes to meta-genomic data, led us to develop the significantly improved genome mining software BAGEL2, as a follow-up of our previous BAGEL software. BAGEL2 identifies putative bacteriocins on the basis of conserved domains, physical properties and the presence of biosynthesis, transport and immunity genes in their genomic context. The software supports parameter-free, class-specific mining and has high-throughput capabilities. Besides building an expert validated bacteriocin database, we describe the development of novel Hidden Markov Models (HMMs) and the interpretation of combinations of HMMs via simple decision rules for prediction of bacteriocin (sub-)classes. Furthermore, the genetic context is automatically annotated based on (combinations of) PFAM domains and databases of known context genes. The scoring system was fine-tuned using expert knowledge on data derived from screening all bacterial genomes currently available at the NCBI. BAGEL2 is freely accessible at http://bagel2.molgenrug.nl.


Expert Opinion on Drug Metabolism & Toxicology | 2011

Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans

Auke J. van Heel; Manuel Montalbán-López; Oscar P. Kuipers

Since the commercialization and ubiquitous use of antibiotics in the 20th century, there has been a steady increase in the number of reports on resistant bacteria. In recent years, this situation has become even more dramatic. The relatively slow development of new drugs, especially those with novel modes of action on target bacteria, is not paired with the rapid rate of resistance appearance. Lantibiotics form a group of antimicrobial peptides of bacterial origin with a dual mechanism of action not shared by other therapeutic compounds in use. They have a high potency to inhibit diverse (multidrug resistant) bacteria, combined with a low tendency to generate resistance. These properties make lantibiotics attractive candidates for clinical applications. This paper discusses some of the most recent results obtained in lantibiotic clinical application, paying special attention to the pharmacokinetic and pharmacodynamic properties they display. The objective of this paper is to give insight into the actual clinical applicability of lantibiotics and to point to the unexplored aspects that should be addressed in future research. The authors feel that lantibiotics could increase the number of second line antibiotics for systemic use in the future; however, further research is still needed before this is possible.


ACS Synthetic Biology | 2013

Designing and Producing Modified, New-to-Nature Peptides with Antimicrobial Activity by Use of a Combination of Various Lantibiotic Modification Enzymes

Auke J. van Heel; Dongdong Mu; Manuel Montalbán-López; Djoke Hendriks; Oscar P. Kuipers

Lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity. After translation, the amino acid residues of these peptides are modified by a distinct set of modification enzymes. This process results in peptides containing one or more lanthionine rings and dehydrated Ser and Thr residues. Previously, an in vivo lanthipeptide production system based on the modification machinery of the model lantibiotic nisin was reported. Here, we present the addition of the modification enzymes LtnJ and GdmD to this production system. With these enzymes we can now produce lanthipeptides that contain d-alanines or a C-terminal aminovinyl-cysteine. We show experimentally that the decarboxylase GdmD is responsible for the C-terminal decarboxylation. Our results demonstrate that different lanthipeptide modification enzymes can work together in an in vivo production system. This yields a plug-and-play system that can be used to select different sets of modification enzymes to work on diverse, specifically designed substrates.


Frontiers in Cell and Developmental Biology | 2016

Potentiating the Activity of Nisin against Escherichia coli.

Liang Zhou; Auke J. van Heel; Manuel Montalbán-López; Oscar P. Kuipers

Lantibiotics are antimicrobial (methyl)lanthionine-containing peptides produced by various Gram-positive bacteria. The model lantibiotic, nisin, binds lipid II in the cell membrane. Additionally, after binding it can insert into the membrane creating a pore. Nisin can efficiently inhibit the growth of Gram-positive bacteria and resistance is rarely observed. However, the activity of lantibiotics is at least 100-fold lower against certain Gram-negative bacteria. This is caused by the fact that Gram-negative bacteria have an outer membrane that hinders the peptides to reach lipid II, which is located in the inner membrane. Improving the activity of lantibiotics against Gram-negative bacteria could be achieved if the outer membrane traversing efficiency is increased. Here, several anti-Gram-negative peptides (e.g., apidaecin 1b, oncocin), or parts thereof, were fused to the C-terminus of either a truncated version of nisin containing the first three/five rings or full length nisin. The activities of these fusion peptides were tested against Gram-negative pathogens. Our results showed that when an eight amino acids (PRPPHPRL) tail from apidaecin 1b was attached to nisin, the activity of nisin against Escherichia coli CECT101 was increased more than two times. This research presents a new and promising method to increase the anti-Gram-negative activity of lantibiotics.


Expert Opinion on Drug Discovery | 2012

Increasing the success rate of lantibiotic drug discovery by Synthetic Biology

Manuel Montalbán-López; Liang Zhou; Andrius Buivydas; Auke J. van Heel; Oscar P. Kuipers

Introduction: Lantibiotics are post-translationally modified antimicrobial peptides produced by bacteria from diverse environments that exhibit an activity against pathogenic bacteria comparable to that of medically used antibiotics. The actual need for new antimicrobials in therapeutics has placed them in the pipeline of antibiotic research, due not only to their high antimicrobial activity but also to the fact that they are directed to novel targets. Areas covered: This review covers the different approaches traditionally used in bacteriocin discovery, based on the isolation of bacteria from different habitats and determining their inhibitory spectrum against a set of relevant strains. It also elaborates on more recent approaches covering organic synthesis and semi-synthesis of lantibiotics, genomic and proteomic approaches and the application of Synthetic Biology to the field of antimicrobial drug discovery. Expert opinion: Lantibiotics show a great potential in fulfilling the requirements for new antimicrobials. Culture-dependent techniques are still applied to lantibiotic discovery producing successful results that can be furthered by employing high-throughput screening techniques and peptidogenomics. The necessity of culturing bacteria and growing them in specific conditions for lantibiotic expression, can hamper the discovery rate, especially in exotic or unculturable bacteria. Thus, a combination of genome mining procedures, to detect novel lantibiotic-related sequences, with heterologous production systems and high-throughput screening, offers a promising strategy. Furthermore, the characterization of the mechanism of action of many lantibiotics, and the development of “plug and play” peptide biosynthesis systems, offers the possibility of initiating the rational design of non-natural lantibiotics based on structure–activity relationships.


Frontiers in Microbiology | 2015

The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity.

Liang Zhou; Auke J. van Heel; Oscar P. Kuipers

Lantibiotics are ribosomally synthesized (methyl)lanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g., in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called “hinge region” of nisin (residues NMK) was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, −1, −2) exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.


Microbial Cell Factories | 2017

Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases

Haojie Cao; Auke J. van Heel; Hifza Ahmed; Maarten Mols; Oscar P. Kuipers

BackgroundBacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface components was constructed, and the corresponding influences on protein secretion were investigated by analyzing the secretion of α-amylase variants with either low-, neutral- or high- isoelectric points (pI).ResultsRelative to the wild-type strain, the presence of overall anionic membrane phospholipids (phosphatidylglycerol and cardiolipin) increased dramatically in the PssA-, ClsA- and double KO mutants, which resulted in an up to 47% higher secretion of α-amylase. Additionally, we demonstrated that the appropriate net charge of secreted targets (AmyTS-23, AmyBs and AmyBm) was beneficial for secretion efficiency as well.ConclusionsIn B. subtilis, the characteristics of cell membrane phospholipid bilayer and the pIs of heterologous α-amylases appear to be important for their secretion efficiency. These two factors can be engineered to reduce the electrostatic interaction between each other during the secretion process, which finally leads to a better secretion yield of α-amylases.


Fems Microbiology Reviews | 2017

Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials

Manuel Montalbán-López; Auke J. van Heel; Oscar P. Kuipers

&NA; As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post‐translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug‐and‐play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.


ACS Synthetic Biology | 2014

Bacillus subtilis Biosensor Engineered To Assess Meat Spoilage

Alicja Daszczuk; Yonathan Dessalegne; Ismael̂ Drenth; Elbrich Hendriks; Emeraldo Jo; Tom van Lente; Arjan Oldebesten; Jonathon Parrish; Wlada Poljakova; Annisa A. Purwanto; Renske van Raaphorst; Mirjam Boonstra; Auke J. van Heel; Martijn Herber; Sjoerd van der Meulen; Jeroen Siebring; Robin A. Sorg; Matthias Heinemann; Oscar P. Kuipers; Jan-Willem Veening

Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage.

Collaboration


Dive into the Auke J. van Heel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne de Jong

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Liang Zhou

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kok

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert N. Moll

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge