Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Auli Karhu is active.

Publication


Featured researches published by Auli Karhu.


Nature Genetics | 2002

Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer.

Ian Tomlinson; N. Afrina Alam; Andrew Rowan; Ella Barclay; Emma Jaeger; David P. Kelsell; Irene M. Leigh; Patricia E. Gorman; H. Lamlum; Shamima Rahman; Rebecca Roylance; S. E. Olpin; Stephen Bevan; Karen Barker; N Hearle; Richard S. Houlston; Maija Kiuru; Rainer Lehtonen; Auli Karhu; Susa Vilkki; Päivi Laiho; Carita Eklund; Outi Vierimaa; Kristiina Aittomäki; Marja Hietala; Pertti Sistonen; Anders Paetau; Reijo Salovaara; Riitta Herva; Virpi Launonen

Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis1,2,3. We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3–q43 (refs 4–6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency7,8,9,10,11, and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor12,13,14.Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis. We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3–q43 (refs 4–6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency, and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor.


Nature Genetics | 2008

Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer

Richard S. Houlston; Emily L. Webb; Peter Broderick; Alan Pittman; Maria Chiara Di Bernardo; Steven Lubbe; Ian Chandler; Jayaram Vijayakrishnan; Kate Sullivan; Steven Penegar; Luis Carvajal-Carmona; Kimberley Howarth; Emma Jaeger; Sarah L. Spain; Axel Walther; Ella Barclay; Lynn Martin; Maggie Gorman; Enric Domingo; Ana Teixeira; David Kerr; Jean-Baptiste Cazier; Iina Niittymäki; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen; Ian Tomlinson; Susan M. Farrington; Albert Tenesa; James Prendergast

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly influence the risk of developing colorectal cancer (CRC). To enhance power to identify additional loci with similar effect sizes, we conducted a meta-analysis of two GWA studies, comprising 13,315 individuals genotyped for 38,710 common tagging SNPs. We undertook replication testing in up to eight independent case-control series comprising 27,418 subjects. We identified four previously unreported CRC risk loci at 14q22.2 (rs4444235, BMP4; P = 8.1 × 10−10), 16q22.1 (rs9929218, CDH1; P = 1.2 × 10−8), 19q13.1 (rs10411210, RHPN2; P = 4.6 × 10−9) and 20p12.3 (rs961253; P = 2.0 × 10−10). These findings underscore the value of large sample series for discovery and follow-up of genetic variants contributing to the etiology of CRC.


Science | 2006

Pituitary adenoma predisposition caused by germline mutations in the AIP gene.

Outi Vierimaa; Marianthi Georgitsi; Rainer Lehtonen; Pia Vahteristo; Antti Kokko; Anniina Raitila; Karoliina Tuppurainen; Tapani Ebeling; Pasi Salmela; Ralf Paschke; Sadi Gundogdu; Ernesto De Menis; Markus J. Mäkinen; Virpi Launonen; Auli Karhu; Lauri A. Aaltonen

Pituitary adenomas are common in the general population, and understanding their molecular basis is of great interest. Combining chip-based technologies with genealogy data, we identified germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene in individuals with pituitary adenoma predisposition (PAP). AIP acts in cytoplasmic retention of the latent form of the aryl hydrocarbon receptor and also has other functions. In a population-based series from Northern Finland, two AIP mutations account for 16% of all patients diagnosed with pituitary adenomas secreting growth hormone and for 40% of the subset of patients who were diagnosed when they were younger than 35 years of age. Typically, PAP patients do not display a strong family history of pituitary adenoma; thus, AIP is an example of a low-penetrance tumor susceptibility gene.


Nature Genetics | 2009

The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling

Sari Tuupanen; Mikko P. Turunen; Rainer Lehtonen; Outi Hallikas; Sakari Vanharanta; Teemu Kivioja; Mikael Björklund; Gong-Hong Wei; Jian Yan; Iina Niittymäki; Jukka Pekka Mecklin; Heikki Järvinen; Ari Ristimäki; Mariachiara Di-Bernardo; Phil East; Luis Carvajal-Carmona; Richard S. Houlston; Ian Tomlinson; Kimmo Palin; Esko Ukkonen; Auli Karhu; Jussi Taipale; Lauri A. Aaltonen

Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk ∼1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.


The Journal of Clinical Endocrinology and Metabolism | 2010

Clinical characteristics and therapeutic responses in patients with Germ-line AIP mutations and pituitary adenomas : An international collaborative study

Adrian Daly; Maria A. Tichomirowa; Patrick Petrossians; Elina Heliövaara; Marie Lise Jaffrain-Rea; Anne Barlier; Luciana A. Naves; Tapani Ebeling; Auli Karhu; Antti Raappana; Laure Cazabat; Ernesto De Menis; Carmen Fajardo Montañana; Gérald Raverot; Robert J. Weil; Timo Sane; Dominique Maiter; Sebastian Neggers; Maria Yaneva; Antoine Tabarin; Elisa Verrua; Eija Eloranta; Arnaud Murat; Outi Vierimaa; Pasi I. Salmela; Philippe Emy; Rodrigo A. Toledo; María Isabel Sabaté; Chiara Villa; Marc Popelier

CONTEXT AIP mutations (AIPmut) give rise to a pituitary adenoma predisposition that occurs in familial isolated pituitary adenomas and less often in sporadic cases. The clinical and therapeutic features of AIPmut-associated pituitary adenomas have not been studied comprehensively. OBJECTIVE The objective of the study was to assess clinical/therapeutic characteristics of AIPmut pituitary adenomas. DESIGN This study was an international, multicenter, retrospective case collection/database analysis. SETTING The study was conducted at 36 tertiary referral endocrine and clinical genetics departments. PATIENTS Patients included 96 patients with germline AIPmut and pituitary adenomas and 232 matched AIPmut-negative acromegaly controls. RESULTS The AIPmut population was predominantly young and male (63.5%); first symptoms occurred as children/adolescents in 50%. At diagnosis, most tumors were macroadenomas (93.3%); extension and invasion was common. Somatotropinomas comprised 78.1% of the cohort; there were also prolactinomas (n = 13), nonsecreting adenomas (n = 7), and a TSH-secreting adenoma. AIPmut somatotropinomas were larger (P = 0.00026), with higher GH levels (P = 0.00068), more frequent extension (P = 0.018) and prolactin cosecretion (P = 0.00023), and occurred 2 decades before controls (P < 0.000001). Gigantism was more common in the AIPmut group (P < 0.000001). AIPmut somatotropinoma patients underwent more surgical interventions (P = 0.00069) and had lower decreases in GH (P = 0.00037) and IGF-I (P = 0.028) and less tumor shrinkage with somatostatin analogs (P < 0.00001) vs. controls. AIPmut prolactinomas occurred generally in young males and frequently required surgery or radiotherapy. CONCLUSIONS AIPmut pituitary adenomas have clinical features that may negatively impact treatment efficacy. Predisposition for aggressive disease in young patients, often in a familial setting, suggests that earlier diagnosis of AIPmut pituitary adenomas may have clinical utility.


Endocrine Reviews | 2013

Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.

Albert Beckers; Lauri A. Aaltonen; Adrian Daly; Auli Karhu

Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations

Marianthi Georgitsi; Anniina Raitila; Auli Karhu; Karoliina Tuppurainen; Markus J. Mäkinen; Outi Vierimaa; Ralf Paschke; Wolfgang Saeger; Rob B. van der Luijt; Timo Sane; Mercedes Robledo; Ernesto De Menis; Robert J. Weil; Anna Wasik; Grzegorz Zielinski; Olga Lucewicz; Jan Lubinski; Virpi Launonen; Pia Vahteristo; Lauri A. Aaltonen

Pituitary adenomas are common neoplasms of the anterior pituitary gland. Germ-line mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause pituitary adenoma predisposition (PAP), a recent discovery based on genetic studies in Northern Finland. In this population, a founder mutation explained a significant proportion of all acromegaly cases. Typically, PAP patients were of a young age at diagnosis but did not display a strong family history of pituitary adenomas. To evaluate the role of AIP in pituitary adenoma susceptibility in other populations and to gain insight into patient selection for molecular screening of the condition, we investigated the possible contribution of AIP mutations in pituitary tumorigenesis in patients from Europe and the United States. A total of 460 patients were investigated by AIP sequencing: young acromegaly patients, unselected acromegaly patients, unselected pituitary adenoma patients, and endocrine neoplasia-predisposition patients who were negative for MEN1 mutations. Nine AIP mutations were identified. Because many of the patients displayed no family history of pituitary adenomas, detection of the condition appears challenging. Feasibility of AIP immunohistochemistry (IHC) as a prescreening tool was tested in 50 adenomas: 12 AIP mutation-positive versus 38 mutation-negative pituitary tumors. AIP IHC staining levels proved to be a useful predictor of AIP status, with 75% sensitivity and 95% specificity for germ-line mutations. AIP contributes to PAP in all studied populations. AIP IHC, followed by genetic counseling and possible AIP mutation analysis in IHC-negative cases, a procedure similar to the diagnostics of the Lynch syndrome, appears feasible in identification of PAP.


Science | 2012

Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors.

Inderpreet Sur; Outi Hallikas; Anna Vähärautio; Jian Yan; Mikko P. Turunen; Martin Enge; Minna Taipale; Auli Karhu; Lauri A. Aaltonen; Jussi Taipale

From Man to Mouse Genome-wide association studies of humans have identified single-nucleotide polymorphisms (SNPs) that increase an individuals risk of developing common diseases like cancer. Most of these SNPs have only a modest effect on risk, and many map to noncoding regions of the genome. Sur et al. (p. 1360, published online 1 November; see the Perspective by Lewis and Tomlinson) used a mouse model to study the functional impact of a particular SNP that resides 300 kilobases upstream of the MYC oncogene on human chromosome 8q24 and has been linked to cancer risk in humans. When a sequence encompassing this SNP was deleted in mice that were predisposed to develop intestinal tumors, the mice displayed fewer tumors than control mice. This SNP may thus play a causal role in human cancer, presumably through altered regulation of MYC. A human genetic variant, identified in genome-wide association studies as increasing cancer risk, alters tumorigenesis in mice. Multiple cancer-associated single-nucleotide polymorphisms (SNPs) have been mapped to conserved sequences within a 500-kilobase region upstream of the MYC oncogene on human chromosome 8q24. These SNPs may affect cancer development through altered regulation of MYC expression, but this hypothesis has been difficult to confirm. We generated mice deficient in Myc-335, a putative MYC regulatory element that contains rs6983267, a SNP accounting for more human cancer-related morbidity than any other genetic variant or mutation. In Myc-335 null mice, Myc transcripts were expressed in the intestinal crypts in a pattern similar to that in wild-type mice but at modestly reduced levels. The mutant mice displayed no overt phenotype but were markedly resistant to intestinal tumorigenesis induced by the APCmin mutation. These results establish that a cancer-associated SNP identified in human genome-wide association studies has a functional effect in vivo.


American Journal of Pathology | 2003

Proportion and Phenotype of MYH-Associated Colorectal Neoplasia in a Population-Based Series of Finnish Colorectal Cancer Patients

Susa Enholm; Tuija Hienonen; Anu Suomalainen; Lara Lipton; Ian Tomlinson; Vesa Kärjä; Matti Eskelinen; Jukka-Pekka Mecklin; Auli Karhu; Heikki Järvinen; Lauri A. Aaltonen

Recessively inherited mutations in the base excision repair gene MYH have recently been associated with predisposition to colorectal adenomas and cancer in materials selected for occurrence of multiple adenomas. In particular, variants Y165C and G382D have been shown to play a role in Caucasian patients. To evaluate the contribution of MYH mutations to colorectal cancer burden on the population level, and to examine the MYH-associated phenotype in an unselected series of colorectal cancer patients, we determined the frequencies of Y165C and G382D MYH mutations in a population-based series of 1042 Finnish colorectal cancer patients. Four (0.4%) patients had both MYH alleles mutated. Although all these patients had multiple adenomatous polyps, the phenotypes tended to be less extreme than in previous studies on selected cases. The lowest number of colorectal adenomas at the time of cancer diagnosis was five. Cases with one mutant MYH allele were subjected to sequencing of all exons to detect possible Finnish founder mutations, but no additional changes were detected. The Y165C and G382D variants were not present in 424 Finnish cancer-free controls showing that MYH mutations are not enriched in the population. As evaluated against national Finnish Polyposis Registry data MYH-associated colorectal cancer appears to be as common as colorectal cancer associated with familial adenomatous polyposis.


American Journal of Pathology | 2004

Biallelic Inactivation of Fumarate Hydratase (FH) Occurs in Nonsyndromic Uterine Leiomyomas but Is Rare in Other Tumors

Rainer Lehtonen; Maija Kiuru; Sakari Vanharanta; Jari Sjöberg; Leena Maija Aaltonen; Kristiina Aittomäki; Johanna Arola; Ralf Bützow; Charis Eng; Kirsti Husgafvel-Pursiainen; Jorma Isola; Heikki Järvinen; Pasi A. Koivisto; Jukka Pekka Mecklin; Päivi Peltomäki; Reijo Salovaara; Veli Matti Wasenius; Auli Karhu; Virpi Launonen; Nina N. Nupponen; Lauri A. Aaltonen

Germline mutations in the fumarate hydratase (FH) gene at 1q43 predispose to dominantly inherited cutaneous and uterine leiomyomas, uterine leiomyosarcoma, and papillary renal cell cancer (HLRCC syndrome). To evaluate the role of FH inactivation in sporadic tumorigenesis, we analyzed a series of 299 malignant tumors representing 10 different malignant tumor types for FH mutations. Additionally, 153 uterine leiomyomas from 46 unselected individuals were subjected to and informative in loss of heterozygosity analysis at the FH locus, and the five (3.3%) tumors displaying loss of heterozygosity were subjected to FH mutation analysis. Although mutation search in the 299 malignant tumors was negative, somatic FH mutations were found in two nonsyndromic leiomyomas; a splice site change IVS4 + 3A>G, leading to deletion of exon four, and a missense mutation Ala196Thr. The occurrence of somatic mutations strongly suggests that FH is a true target of the 1q43 deletions. Although uterine leiomyomas are the most common tumors of women, specific inactivating somatic mutations contributing to the formation of nonsyndromic leiomyomas have not been reported previously. Taking into account the apparent risk of uterine leiomyosarcoma associated with FH germline mutations, the finding raises the possibility that also some nonsyndromic leiomyomas may have a genetic profile that is more prone to malignant degeneration. Our data also indicate that somatic FH mutations appear to be limited to tumor types observed in hereditary leiomyomatosis and renal cell cancer.

Collaboration


Dive into the Auli Karhu's collaboration.

Top Co-Authors

Avatar

Lauri A. Aaltonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jukka-Pekka Mecklin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge